Most cited article - PubMed ID 30475910
Cluster sets vs. traditional sets: Levelling out the playing field using a power-based threshold
BACKGROUND: The acute effects of resistance training (RT) set structure alteration are well established; however, less is known about their effects on chronic training adaptations. OBJECTIVE: The aim of this systematic review and meta-analysis was to synthesise the available evidence on the effectiveness of traditional (TS), cluster (CS) and rest redistribution (RR) set structures in promoting chronic RT adaptations, and provide an overview of the factors which might differentially influence the magnitude of specific training adaptations between set structure types. METHODS: This review was performed using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines encompassing the literature search of five databases. Studies in English that compared muscular strength, endurance, and/or hypertrophy adaptations, as well as vertical jump performance, velocity and power at submaximal loads and shifts in the slopes of force-velocity profiles between TS and CS or RR set structures (i.e., alternative set structures) were included. Risk of bias assessment was performed using a modified Cochrane Collaboration's tool for assessing risk of bias in randomised trials. Random-effects meta-analyses and meta-regressions were performed where possible. RESULTS: 17 studies met the inclusion criteria, none had more than one risk of bias item assessed as high risk. Pooled results revealed that none of the set structures were more effective at inducing strength (standardised mean difference (SMD) = - 0.06) or hypertrophy (SMD = - 0.03). TS were more effective at improving muscular endurance compared to alternative set structures (SMD = - 0.38), whereas alternative set structures tended to be more effective for vertical jump performance gains (SMD = 0.13), but this effect was not statistically significant (p = 0.190). Greater velocity and power outputs at submaximal loads (SMD = 0.18) were observed when using alternative set structures compared to TS. In addition, alternative set structures promoted greater shifts of the slope of force-velocity profiles towards more velocity dominant profiles compared to TS (SMD = 0.28). Sub-group analyses controlling for each alternative set structure independently showed mixed results likely caused by the relatively small number of studies available for some outcomes. CONCLUSION: Modifying TS to an alternative set structure (CS or RR) has a negligible impact on strength and hypertrophy. Using CS and RR can lead to greater vertical jump performance, velocity and power at submaximal loads and shifts to more velocity dominant force-velocity profiles compared to training using TS. However, TS may provide more favourable effects on muscle endurance when compared to CS and RR. These findings demonstrate that altering TS to alternative set structures may influence the magnitude of specific muscular adaptations indicating set structure manipulation is an important consideration for RT program design. PROTOCOL REGISTRATION: The original protocol was prospectively registered (CRD42019138954) with the PROSPERO (International Prospective Register of Systematic Reviews).
- MeSH
- Acclimatization MeSH
- Adaptation, Physiological MeSH
- Humans MeSH
- Rest MeSH
- Resistance Training * MeSH
- Muscle Strength MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Meta-Analysis MeSH
- Systematic Review MeSH
The purpose of this study was to determine the effects of different set configurations on strength and muscular performance adaptations after an 8-week resistance training program. Twenty-four male powerlifters participated in this study and were randomly assigned to one of two resistance training groups: (1) cluster sets (CS: n = 8), (2), traditional sets (TS: n = 8), and a control group (CG: n = 8). All powerlifters were evaluated for thigh and arm circumference, upper and lower body impulsive activities, and 1 repetition maximum (1RM) in the back squat, bench press, and deadlift prior to and after the 8-week training intervention. After training, both the CS and TS groups increased arm and thigh circumferences and decreased body fat. The CS group resulted in greater increases in upper and lower body impulsive activities than the TS group, respectively. In addition, the CS and TS groups indicated similar changes in 1RM bench press, back squat, and deadlift following the 8 weeks training intervention. These results suggest that cluster sets induce adaptive changes that favor impulsive activities in powerlifters.
- MeSH
- Adult MeSH
- Muscle, Skeletal metabolism MeSH
- Humans MeSH
- Longitudinal Studies MeSH
- Young Adult MeSH
- Resistance Training methods MeSH
- Muscle Strength * MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Randomized Controlled Trial MeSH
BACKGROUND: The alteration of individual sets during resistance training (RT) is often used to allow for greater velocity and power outputs, reduce metabolite accumulation such as lactate and also reduce perceived exertion which can ultimately affect the resultant training adaptations. However, there are inconsistencies in the current body of evidence regarding the magnitude of the effects of alternative set structures (i.e., cluster sets and rest redistribution) on these acute mechanical, metabolic, and perceptual responses during and after RT. OBJECTIVE: This study aimed to systematically review and meta-analyse current evidence on the differences between traditional and alternative (cluster and rest redistribution) set structures on acute mechanical, metabolic, and perceptual responses during and after RT, and to discuss potential reasons for the disparities noted in the literature. METHODS: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, and five databases were searched until June 2019. Studies were included when they were written in English and compared at least one acute mechanical, metabolic, or perceptual response between traditional, cluster or traditional and rest redistribution set structures in healthy adults. Random-effects meta-analyses and meta-regressions were performed where possible. RESULTS: Thirty-two studies were included. Pooled results revealed that alternative set structures allowed for greater absolute mean [standardized mean difference (SMD) = 0.60] and peak velocity (SMD = 0.41), and mean (SMD = 0.33) and peak power (SMD = 0.38) during RT. In addition, alternative set structures were also highly effective at mitigating a decline in velocity and power variables during (SMD = 0.83-1.97) and after RT (SMD = 0.58) as well as reducing lactate accumulation (SMD = 1.61) and perceived exertion (SMD = 0.81). These effects of alternative set structures on velocity and power decline and maintenance during RT were considerably larger than for absolute velocity and power variables. Sub-group analyses controlling for each alternative set structure independently showed that cluster sets were generally more effective than rest redistribution in alleviating mechanical, metabolic, and perceptual markers of fatigue. CONCLUSION: Alternative set structures can reduce mechanical fatigue, perceptual exertion, and metabolic stress during and after RT. However, fundamental differences in the amount of total rest time results in cluster sets generally being more effective than rest redistribution in alleviating fatigue-induced changes during RT, which highlights the importance of classifying them independently in research and in practice. Additionally, absolute values (i.e., mean session velocity or power), as well as decline and maintenance of the mechanical outcomes during RT, and residual mechanical fatigue after RT, are all affected differently by alternative set structures, suggesting that these variables may provide distinct information that can inform future training decisions. PROTOCOL REGISTRATION: The original protocol was prospectively registered (CRD42019138954) with the PROSPERO (International Prospective Register of Systematic Reviews).
- MeSH
- Adult MeSH
- Lactic Acid blood MeSH
- Humans MeSH
- Rest * MeSH
- Resistance Training methods MeSH
- Physical Exertion MeSH
- Fatigue * MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Meta-Analysis MeSH
- Systematic Review MeSH
- Names of Substances
- Lactic Acid MeSH
This study determined whether redistributing total rest time into shorter, but more frequent rest periods could maintain velocity and power output during 3 traditional sets of 6 clean pulls using 80% (TS80), 100% (TS100) and 120% (TS120) of power clean 1RM with 180 seconds of inter-set rest and during 3 "rest redistribution" protocols of 9 sets of 2 clean pulls using 80% (RR80), 100% (RR100) and 120% (RR120) of power clean 1RM with 45 seconds of inter-set rest. The total number of repetitions performed above 10 and 20% velocity loss thresholds, mean and peak velocity maintenance (the average of all 18 repetitions relative to the best repetition; MVM, PVM), and decline (the worst repetition relative to the best repetition; MVD, PVD) were calculated. For MVM, PVM, MVD, and PVD, there were small-to-moderate effect sizes in favour of RR80 and RR100, but large effects favouring RR120, compared to their respective TS protocols. The number of repetitions within a 20% velocity loss threshold was 17.7 ± 0.6 during RR and 16.5 ± 2.4 during TS (effect size 0.69); and the number of repetitions within a 10% velocity loss threshold was about 13.1 ± 3.7 during RR and 10.7 ± 3.6 during TS (effect size 0.66). Therefore, RR generally allowed for a better overall maintenance of velocity and power, especially at heavy loads. Coaches who wish to implement velocity-based training, but who do not wish to purchase or use the associated equipment, may consider rest-redistribution to encourage similar training stimuli.
- Keywords
- cluster sets, fatigue, power, resistance training, traditional sets, weightlifting,
- Publication type
- Journal Article MeSH