Most cited article - PubMed ID 30744900
Effects of s-metolachlor on early life stages of marbled crayfish
Although pesticides are often discharged into surface waters in pulses as opposed to a sustained release, the effect of episodic pollution events on freshwater crayfish is largely unknown. We monitored change in heart rate and distance moved to assess the response of signal crayfish Pacifastacus leniusculus to short-term exposure to environmentally relevant concentrations of metazachlor (MTZ), terbuthylazine (TER), and thiacloprid (TCL). Crayfish exposed to 20 µg/L of MTZ exhibited a significant increase in mean heart rate and distance moved. Increased heart rate was detected at 118 ± 74 s post-exposure to MTZ. There were no significant differences in mean heart rate and distance moved in crayfish exposed to 6 µg/L of TCL and 4 µg/L of TER. A significant correlation between heart rate and distance moved was found in all exposed groups. These results suggest that pulse exposure to MTZ impact crayfish physiology and behavior during short-term period. With pulse exposure to TCL and TER, crayfish not exhibiting a locomotor response may continue to be exposed to lower, but potentially harmful, levels of pollutants. Evidence of the impacts of pesticide pulse at environmentally relevant concentrations on crayfish is scarce. Further study is required to determine the ecological effects of such events on freshwater crayfish.
- Keywords
- Freshwater invertebrate, Locomotor activity Metazachlor, Short-term exposure, Terbuthylazine, Thiacloprid,
- MeSH
- Water Pollutants, Chemical * toxicity MeSH
- Pesticides * toxicity MeSH
- Astacoidea MeSH
- Heart Rate MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Water Pollutants, Chemical * MeSH
- Pesticides * MeSH
- thiacloprid MeSH Browser
Chlorpyrifos is an organophosphate insecticide occurring in aquatic ecosystems. Due to exposure to xenobiotics, several harmful effects on aquatic organisms are noticed worldwide. Mangrove crabs are an ecologically important aquatic invertebrate species in food web interactions and in the mangrove ecosystem. Therefore, this study aimed to evaluate the cytotoxic effects of chlorpyrifos on the mangrove crab, Episesarma tetragonum. Crabs were exposed to 0.0294 and 0.0588 ppm of chlorpyrifos for 7 and 28 days. Cytopathologic effects on the gill, hepatopancreas, and muscle were investigated, and observations were compared with a control group. The results suggest that chlorpyrifos induces time- and concentration-dependent cytopathological alternations in the gill and exhibited epithelial lifting, oedema, necrosis, and a fusion of secondary lamellae and haemorrhage. The deceased hepatopancreas showed infiltration, a large lumen formation, and the disappearance of haemocytes, while the muscle tissue showed atrophy, necrosis, a wavy appearance, an accumulation of granular material between muscle fibres, and fragmentation in a mangrove crab. This study shows the great potential of cytopathological investigations, allows us to assess the sensitivity of various aquatic animal species to potentially dangerous compounds, and calculates safe concentrations with which to reduce pesticide use.
- Keywords
- chlorpyrifos, crab, cytopathology, cytotoxicity, insecticide,
- Publication type
- Journal Article MeSH
Degradation products of herbicides, alone and in combination, may affect non-target aquatic organisms via leaching or runoff from the soil. The effects of 50-day exposure of primary metabolites of chloroacetamide herbicide, acetochlor ESA (AE; 4 µg/L), and glyphosate, aminomethylphosphonic acid (AMPA; 4 µg/L), and their combination (AMPA + AE; 4 + 4 µg/L) on mortality, growth, oxidative stress, antioxidant response, behaviour, and gill histology of early life stages of marbled crayfish (Procambarus virginalis) were investigated. While no treatment effects were observed on cumulative mortality or early ontogeny, growth was significantly lower in all exposed groups compared with the control group. Significant superoxide dismutase activity was observed in exposure groups, and significantly higher glutathione S-transferase activity only in the AMPA + AE group. The gill epithelium in AMPA + AE-exposed crayfish showed swelling as well as numerous unidentified fragments in interlamellar space. Velocity and distance moved in crayfish exposed to metabolites did not differ from controls, but increased activity was observed in the AMPA and AE groups. The study reveals the potential risks of glyphosate and acetochlor herbicide usage through their primary metabolites in the early life stages of marbled crayfish.
- Keywords
- behaviour, crayfish, herbicide, metabolite, ontogeny, toxicity,
- Publication type
- Journal Article MeSH
The effects of the herbicide metazachlor and its major metabolite metazachlor OA at two concentrations, including environmentally relevant concentrations of metazachlor (0.0115 µmol/l and 0.0790 µmol/l) and metazachlor OA (0.0117 µmol/l and 0.0805 µmol/l), respectively, were evaluated on early ontogeny, growth, behaviour, oxidative stress, antioxidant enzyme levels, histology, and mortality of marbled crayfish Procambarus virginalis. Both tested concentrations of metazachlor and metazachlor OA were associated with significantly lower growth and delayed ontogenetic development compared to controls. Exposure of metazachlor at 0.0115 µmol/l and metazachlor OA at 0.0117 µmol/l and 0.0805 µmol/l resulted in significantly lower activity of total superoxide dismutase (SOD), catalase (CAT), glutathione s-transferase (GST), glutathione reductase (GR), and reduced glutathione (GSH) compared with control and resulted in gill anomalies ranging from wall thinning to focal disintegration of branchial structure. Metazachlor at the environmentally relevant concentration of 0.0790 µmol/l was associated with significant alterations of crayfish distance moved and walking speed. The potential risk associated with metazachlor use in agriculture related to effects on non-target aquatic organisms.
- MeSH
- Acetamides metabolism toxicity MeSH
- Antioxidants metabolism MeSH
- Water Pollutants, Chemical toxicity MeSH
- Ecotoxicology MeSH
- Embryo, Nonmammalian drug effects MeSH
- Glutathione metabolism MeSH
- Glutathione Reductase metabolism MeSH
- Hepatopancreas drug effects pathology MeSH
- Herbicides metabolism toxicity MeSH
- Locomotion drug effects MeSH
- Oxidative Stress drug effects MeSH
- Astacoidea drug effects embryology growth & development metabolism MeSH
- Superoxide Dismutase metabolism MeSH
- Gills drug effects pathology MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Acetamides MeSH
- Antioxidants MeSH
- Water Pollutants, Chemical MeSH
- Glutathione MeSH
- Glutathione Reductase MeSH
- Herbicides MeSH
- metazachlor MeSH Browser
- Superoxide Dismutase MeSH