Nejvíce citovaný článek - PubMed ID 30758960
Vibrational Optical Activity of Intermolecular, Overtone, and Combination Bands: 2-Chloropropionitrile and α-Pinene
Spectroscopic detection of chiral compounds is often hampered by a low sensitivity. For Raman optical activity (ROA), the signal can be dramatically increased in surface-enhanced experiments. So far, however, reproducible surface-enhanced ROA (SEROA) spectra were obtained for a reporter molecule only via induced chirality, and the intensities were just proportional to the Raman scattering. In the present study, we show that the signal can be substantially increased if colloidal silver nanoparticles are prepared already in the presence of a chiral analyte. In this case, both the analyte's and reporter's bands are visible. In addition, some experiments provided bisignate SEROA patterns, thus significantly enhancing information about the molecular structure provided by this spectroscopic method. Increased electronic circular dichroism (ECD) of the capped aggregated colloids suggests that ECD and polarized Raman scattering (ECD-Raman) contribute to the monosignate SEROA intensities, while well-dispersed nonaggregating colloids are important for observation of true (bisignate) molecular vibrational SEROA.
- Klíčová slova
- chiral analyte capped colloid, chirality, electronic circular dichroism, silver nanoparticles, surface-enhanced Raman optical activity,
- Publikační typ
- časopisecké články MeSH
Combining Raman scattering and Raman optical activity (ROA) with computer simulations reveals fine structural and physicochemical properties of chiral molecules. Traditionally, the region of interest comprised fundamental transitions within 200-1800 cm-1. Only recently, nonfundamental bands could be observed as well. However, theoretical tools able to match the observed spectral features and thus assist their assignment are rather scarce. In this work, we present an accurate and simple protocol based on a three-quanta anharmonic perturbative approach that is fully fit to interpret the observed signals of methyloxirane within 150-4500 cm-1. An unprecedented agreement even for the low-intensity combination and overtone transitions has been achieved, showing that anharmonic Raman and ROA spectroscopies can be valuable tools to understand vibrations of chiral molecules or to calibrate computational models.
- Publikační typ
- časopisecké články MeSH