Herein, we present the first experimental observation of isolated progesterone, an endogenous steroid, placed in the gas phase by laser ablation and characterized in a supersonic expansion by Fourier transform microwave techniques. Guided by quantum-chemical calculations, we assigned the rotational spectrum of the most stable structure. The internal rotation of the acetyl methyl group led to the observation of A-E doublets in the spectrum, which were analyzed, resulting in a V3 barrier of 2.4425 ± 0.0025 kJ mol-1. By fitting over 250 transitions, we determined accurate rotational constants that enabled us to compare the gas phase geometrical parameters with those of crystalline forms and complexes with progesterone receptors. Our results indicate that the A ring of progesterone that contains the ketone group is surprisingly flexible, despite its rigid appearance. This finding is particularly significant, since this ring is an active biological site that is involved in strong intermolecular interactions. Notably, progesterone C21H30O2 is the largest molecule investigated using laser ablation rotational spectroscopy.
- Publikační typ
- časopisecké články MeSH
The potentials of electrochemical processes in ideal aqueous media are related to the potential of a normal hydrogen electrode (NHE). However, in non-ideal media, the potentials of a metallocene redox couple are used as a reference. Such measurements with free metallocene in solution are complicated by adsorption and mass transport phenomena and solvation effects. Herein, a platinum electrode with an anchored ferrocene moiety (Pt,Fc) was used for cyclic voltammetric measurements of the potential of ferrocene/ferrocenium (Fc/Fc+) redox transformation in not only non-aqueous but, for the first time, aqueous solutions as well. This enabled us to eliminate the aforementioned problems associated with the application of free metallocene molecules in solution and, thus, to relate the midpoint potential (Epm) of the Fc/Fc+ redox couple to a NHE. After elimination of the liquid junction potential in an aqueous 0.1 M KCl solution at 25 °C, the average intraday Epm value obtained with freshly prepared Pt,Fc electrodes was found to be 0.312 ± 0.008 V versus the secondary Ag|AgCl electrode. The Pt,Fc electrode can be applied for the standardization of electrochemical measurements and investigation of solvation phenomena at interfaces in non-ideal media.
- Publikační typ
- časopisecké články MeSH
The potential of the vapor-phase deposition of metal halide perovskites (MHPs) for solar cells remains largely untapped, particularly in achieving rapid deposition rates. In this study, we employ in situ photoluminescence (PL) to monitor the growth dynamics of MHPs deposited via pulsed laser deposition (PLD), with rates ranging from 6 to 80 nm/min. Remarkably, the PL intensity evolution remains consistent across both low- and high-deposition rates, indicating that increased deposition rates do not significantly alter the fundamental mechanisms driving MHP formation via PLD. However, microstructural analysis and time-resolved microwave conductivity (TRMC) measurements reveal that increasing deposition rates lead to randomly oriented films on contact layers and reduced charge mobility compared with films grown at lower deposition rates. These findings emphasize the critical role of controlling initial nucleation and the value of in situ PL monitoring in optimizing the vapor-phase deposition of MHPs for enhanced photovoltaic performance at high deposition rates.
- Publikační typ
- časopisecké články MeSH
Ultrashort laser pulses are extensively used for efficient manipulation of interfacial spin injection in two-dimensional van der Waals (vdW) heterostructures. However, physical processes accompanying the photoinduced spin transfer dynamics on the all-semiconductor ferromagnetic vdW heterostructure remain largely unexplored. Here, we present a computational investigation of the femtosecond laser pulse induced purely electron-mediated spin transfer dynamics at a time scale of less than 50 fs in a vdW heterostructure. The latter is composed of two semiconducting monolayers, namely, a ferromagnetic material CrSBr and a nonmagnetic phosphorene, and is denoted as CrSBr-P. We observe an ultrafast spin injection from the Cr atoms to the P atoms in a few femtoseconds by both optically induced and interfacial atom-mediated spin transfer effects. We also show that the demagnetization and spin transfer in the ferromagnetic-nonmagnetic CrSBr-P vdW heterostructure can be sensitively manipulated by laser pulses with different fluences. Our study offers a microscopic understanding of spin dynamics in these vdW heterostructures aiming toward their potential spintronic applications, which rely on optically controlled spin transfer processes.
- Publikační typ
- časopisecké články MeSH
In recent years, action-detected ultrafast spectroscopies have gained popularity offering distinct advantages over their coherently detected counterparts, such as spatially resolved and operando measurements with high sensitivity. However, there are also fundamental limitations connected to the process of signal generation in action-detected experiments. Here we perform fluorescence-detected two-dimensional electronic spectroscopy (F-2DES) of the light-harvesting II (LH2) complex from purple bacteria. We demonstrate that the B800-B850 energy transfer process in LH2 is weak but observable in F-2DES, unlike in coherently detected 2DES where the energy transfer is visible with 100% contrast. We explain the weak signatures using a disordered excitonic model that accounts for experimental conditions. We further derive a general formula for the presence of excited-state signals in multichromophoric aggregates, dependent on the aggregate geometry, size, excitonic coupling and disorder. We find that the prominence of excited-state dynamics in action-detected spectroscopy offers a unique probe of excitonic delocalization in multichromophoric systems.
- Publikační typ
- časopisecké články MeSH
Cytochrome b562 is a small redox-active heme protein that has served as an important model system for understanding biological electron transfer processes. Here, we present a comprehensive theoretical study of electron transport mechanisms in protein-metal junctions incorporating cytochrome b562 using a multi-scale computational approach. Employing molecular dynamics (MD) simulations, we generated junction geometries for both vacuum-dried and solvated conditions, with the protein covalently bound to gold contacts in various configurations. Coherent tunneling, described by the Landauer-Buttiker formalism within the density functional theory (DFT) framework, is compared to the incoherent hopping charge transport mechanism captured by the semi-classical Marcus theory. The tunneling was identified as the dominant mechanism explaining the experimental data measured on the cytochrome b562 junctions, exhibiting exponential yet very shallow distance dependence. While the structural orientations and protein contacts with the electrodes influence the junction conductance significantly, the solvation effects are relatively small, affecting the electronic properties mostly via the adsorption arrangement. On the other hand, the considerable temperature dependence of the conductance was found strong only for hopping, while the tunneling current magnitudes remain practically unaffected and are a good indicator of the coherent mechanism in this case.
- MeSH
- cytochromy typu b chemie metabolismus MeSH
- proteiny z Escherichia coli MeSH
- rozpouštědla * chemie MeSH
- simulace molekulární dynamiky * MeSH
- teorie funkcionálu hustoty MeSH
- teplota * MeSH
- transport elektronů MeSH
- zlato chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytochrome b562, E coli MeSH Prohlížeč
- cytochromy typu b MeSH
- proteiny z Escherichia coli MeSH
- rozpouštědla * MeSH
- zlato MeSH
Interest in the observation and characterization of organic isomers in astronomical environments has grown rapidly with an increase in the sensitivity of detection techniques. Accurate modeling and interpretation of these environments require experimental isomer-specific reactivity and spectroscopic measurements. Given the abundance of formaldehyde (H2CO) in various astrophysical objects, the properties and reactivities of its cation isomers H2CO•+ and HCOH•+ are of significant interest. However, for the hydroxymethylene radical cation HCOH•+ (and its isotopologue DCOH•+), detailed reactivity studies have been limited by the lack of suitable experimental methods to generate this isomer with high purity. Here, potential approaches to the isomer-selective generation of HCOH•+ and DCOH•+ are characterized through differential reactivity measurements. While the dissociative photoionization of cyclopropanol (c-CH2CH2CHOH) is determined to be unsuitable, the dissociation of methanol-d3 (CD3OH) allows for the formation of DCOH•+ with a fractional abundance of >99% at photon energies below 14.8 eV. These results will allow future spectroscopic and reactivity measurements of HCOH•+/DCOH•+ to be conducted, laying the groundwork for future detection and incorporation into models of the interstellar medium.
- Publikační typ
- časopisecké články MeSH
Over the last decades, theoretical photochemistry has produced multiple techniques to simulate the nonadiabatic dynamics of molecules. Surprisingly, much less effort has been devoted to adequately describing the first step of a photochemical or photophysical process: photoexcitation. Here, we propose a formalism to include the effect of a laser pulse in trajectory-based nonadiabatic dynamics at the level of the initial conditions, with no additional cost. The promoted density approach (PDA) decouples the excitation from the nonadiabatic dynamics by defining a new set of initial conditions, which include an excitation time. PDA with surface hopping leads to nonadiabatic dynamics simulations in excellent agreement with quantum dynamics using an explicit laser pulse and highlights the strong impact of a laser pulse on the resulting photodynamics and the limits of the (sudden) vertical excitation. Combining PDA with trajectory-based nonadiabatic methods is possible for any arbitrary-sized molecules using a code provided in this work.
- Publikační typ
- časopisecké články MeSH
Target analysis is employed to resolve the ground and excited state properties from simultaneously measured Femtosecond Stimulated Raman Spectra (FSRS) and Transient Absorption Spectra (TAS). FSRS is a three-pulse technique, involving picosecond Raman pump pulses and femtosecond visible pump and probe pulses. The TAS are needed to precisely estimate the properties of the Instrument Response Function. The prezero "coherent artifact" present during the overlap of the three pulses is described by a damped oscillation with a frequency (ω - ωn) where ωn is a ground state resonance Raman frequency. Simultaneous target analysis of the FSRS and TAS allows the complete excited state dynamics to be resolved with a time resolution better than 100 fs. The model system studied is the carotenoid lycopene in tetrahydrofuran. The lycopene dynamics show a spectral evolution with seven states, including a biphasic cooling process during the S2-S1 internal conversion, multiple S1 lifetimes, and an S* state decaying with a lifetime of 7 ps.
- Publikační typ
- časopisecké články MeSH
Many proteins are thought to coordinate distant sites in their structures through a concerted action of global structural vibrations. However, the direct experimental spectroscopic detection of these vibration modes is rather elusive. We used normal-mode analysis to explore the dominant vibration modes of an all-atom model of the tubulin protein and described their characteristics using a large ensemble of tubulin structures. We quantified the frequency range of the normal vibrational modes to be in the subterahertz band, specifically between ∼40 and ∼160 GHz. Adding water layers to the model increases the frequencies of the low-frequency modes and narrows the frequency variations of the modes among the protein ensemble. We also showed how the electromagnetic absorption of tubulin vibration modes is affected by vibrational damping. These results contribute to our understanding of tubulin's vibrational and electromagnetic properties and provide a foundation for future attempts to control protein behavior via external electromagnetic fields.
- Publikační typ
- časopisecké články MeSH