Most cited article - PubMed ID 30830691
Taxonomic resolution of the genus Cyanothece (Chroococcales, Cyanobacteria), with a treatment on Gloeothece and three new genera, Crocosphaera, Rippkaea, and Zehria
Recent phylogenetic analyses of members of the Tolypothrichaceae (Nostocales, Cyanobacteria) based on 16S rRNA gene sequence data have demonstrated that the soil-inhabiting members of the family belong to a clade separate from the aquatic and subaerial members of the family. The soil-inhabiting species clade includes Spirirestis, a monophyletic taxon originally defined by its tight spiral coiling. Most of the soil-inhabiting species have been identified in the past as belonging either to Hassallia or Tolypothrix, which are subaerial and aquatic taxa, respectively. A comprehensive study of the terrestrial Tolypothrichaceae led us to conclude that all terrestrial Tolypothrichaceae should be included in the genus Spirirestis, even though most of those isolates lack the spiral coiling diagnostic of the genus. Using a polyphasic approach, we recognize seven distinct clades in Spirirestis, which we split into seven species: S. rafaelensis (the generitype), S. californica comb. nov., S. pseudoramosissima comb. nov., S. lignicolor sp. nov., S. williamsae sp. nov., S. hydroterrestris sp. nov., and S. atacamensis sp. nov. Spirirestis rafaelensis and S. californica are represented by multiple isolates, and we postulate that with time and further taxon sampling, some of the strains we included in these two species may be recognized as additional species. As the study of soil cyanobacteria continues, additional species of Spirirestis will likely be discovered and described.
- Keywords
- Hassallia, Tolypothrix, 16S–23S ITS, Nostocales, Tolypothrichaceae, biological soil crusts, phylogeny,
- Publication type
- Journal Article MeSH
Crocosphaera and Cyanothece are both unicellular, nitrogen-fixing cyanobacteria that prefer different environments. Whereas Crocosphaera mainly lives in nutrient-deplete, open oceans, Cyanothece is more common in coastal, nutrient-rich regions. Despite their physiological similarities, the factors separating their niches remain elusive. Here we performed physiological experiments on clone cultures and expand upon a simple ecological model to show that their different niches can be sufficiently explained by the observed differences in their photosynthetic capacities and rates of carbon (C) consumption. Our experiments revealed that Cyanothece has overall higher photosynthesis and respiration rates than Crocosphaera. A simple growth model of these microorganisms suggests that C storage and consumption are previously under-appreciated factors when evaluating the occupation of niches by different marine nitrogen fixers.
- Keywords
- Carbon consumption, Niche separation, UCYN-B, UCYN-C,
- Publication type
- Journal Article MeSH
Marine diazotrophs are a diverse group with key roles in biogeochemical fluxes linked to primary productivity. The unicellular, diazotrophic cyanobacterium Cyanothece is widely found in coastal, subtropical oceans. We analyze the consequences of diazotrophy on growth efficiency, compared to NO3 --supported growth in Cyanothece, to understand how cells cope with N2-fixation when they also have to face carbon limitation, which may transiently affect populations in coastal environments or during blooms of phytoplankton communities. When grown in obligate diazotrophy, cells face the double burden of a more ATP-demanding N-acquisition mode and additional metabolic losses imposed by the transient storage of reducing potential as carbohydrate, compared to a hypothetical N2 assimilation directly driven by photosynthetic electron transport. Further, this energetic burden imposed by N2-fixation could not be alleviated, despite the high irradiance level within the cultures, because photosynthesis was limited by the availability of dissolved inorganic carbon (DIC), and possibly by a constrained capacity for carbon storage. DIC limitation exacerbates the costs on growth imposed by nitrogen fixation. Therefore, the competitive efficiency of diazotrophs could be hindered in areas with insufficient renewal of dissolved gases and/or with intense phytoplankton biomass that both decrease available light energy and draw the DIC level down.
- Keywords
- Crocosphaera subtropica, Cyanothece, carbon limitation, light limitation, nitrogen fixation, photosynthesis,
- Publication type
- Journal Article MeSH
Unicellular nitrogen fixing cyanobacteria (UCYN) are abundant members of phytoplankton communities in a wide range of marine environments, including those with rapidly changing nitrogen (N) concentrations. We hypothesized that differences in N availability (N2 vs. combined N) would cause UCYN to shift strategies of intracellular N and C allocation. We used transmission electron microscopy and nanoscale secondary ion mass spectrometry imaging to track assimilation and intracellular allocation of 13C-labeled CO2 and 15N-labeled N2 or NO3 at different periods across a diel cycle in Cyanothece sp. ATCC 51142. We present new ideas on interpreting these imaging data, including the influences of pre-incubation cellular C and N contents and turnover rates of inclusion bodies. Within cultures growing diazotrophically, distinct subpopulations were detected that fixed N2 at night or in the morning. Additional significant within-population heterogeneity was likely caused by differences in the relative amounts of N assimilated into cyanophycin from sources external and internal to the cells. Whether growing on N2 or NO3, cells prioritized cyanophycin synthesis when N assimilation rates were highest. N assimilation in cells growing on NO3 switched from cyanophycin synthesis to protein synthesis, suggesting that once a cyanophycin quota is met, it is bypassed in favor of protein synthesis. Growth on NO3 also revealed that at night, there is a very low level of CO2 assimilation into polysaccharides simultaneous with their catabolism for protein synthesis. This study revealed multiple, detailed mechanisms underlying C and N management in Cyanothece that facilitate its success in dynamic aquatic environments.
- Keywords
- Crocosphaera subtropica (former Cyanothece sp. ATCC 51142), Cyanothece, TEM, carbon fixation, nanoSIMS, nitrogen fixation, photosynthesis,
- Publication type
- Journal Article MeSH
Nitrogen-fixing organisms are of importance to the environment, providing bioavailable nitrogen to the biosphere. Quantitative models have been used to complement the laboratory experiments and in situ measurements, where such evaluations are difficult or costly. Here, we review the current state of the quantitative modeling of nitrogen-fixing organisms and ways to enhance the bridge between theoretical and empirical studies.
- Keywords
- Mathematical model, Nitrogen fixation, Nitrogen fixers, Oxygen, Photosynthesis, Quantitative model,
- Publication type
- Journal Article MeSH
- Review MeSH