Nejvíce citovaný článek - PubMed ID 30867029
In vivo fluorescent cercariae reveal the entry portals of Cardiocephaloides longicollis (Rudolphi, 1819) Dubois, 1982 (Strigeidae) into the gilthead seabream Sparus aurata L
Parasites, especially brain-encysting trematodes, can have an impact on host behaviour, facilitating the transmission to next host and completion of the life cycle, but insufficient research has been done on whether specific brain regions are targeted. Using Cardiocephaloides longicollis as a laboratory model, the precise distribution of metacercariae in experimentally-infected, wild and farmed fish was mapped. The brain regions targeted by this parasite were explored, also from a histologic perspective, and potential pathogenic effects were evaluated. Experimental infections allowed to reproduce the natural infection intensity of C. longicollis, with four times higher infection intensity at the higher dose (150 vs 50 cercariae). The observed metacercarial distribution, similar among all fish groups, may reflect a trematode species-specific pattern: metacercariae occur with highest density in the optic lobe area (primarily infecting the periventricular gray zone of optic tectum) and the medulla oblongata, whereas other areas such as the olfactory lobes and cerebellar lobes may be occupied when the more frequently invaded parts of the brain were crowded. Mono- and multicysts (i.e. formed either with a single metacercaria, or with 2-25 metacercariae encapsulated together) may be formed depending on the aggregation and timing of metacercariae arrival, with minor host inflammatory response. Larvae of C. longicollis colonizing specific brain areas may have an effect on the functions associated with these areas, which are generally related to sensory and motor functions, but are also related to other host fitness traits such as school maintenance or recognition of predators. The detailed information on the extent and distribution of C. longicollis in fish encephalon sets the ground to understand the effects of brain parasites on fish, but further investigation to establish if C. longicollis, through purely mechanical damage (e.g., occupation, pressure and displacement), has an actual impact on host behaviour remains to be tested under controlled experimental conditions.
- Klíčová slova
- Brain-encysting, Cardiocephaloides longicollis, Histology, Microhabitat selection, Trematoda,
- Publikační typ
- časopisecké články MeSH
Cercarial activity and survival are crucial traits for the transmission of trematodes. Temperature is particularly important, as faster depletion of limited cercarial energy reserves occurs at high temperatures. Seasonal climate conditions in high latitude regions may be challenging to complete trematode life cycle during the 6-month ice-free period, but temperature effects on the activity and survival of freshwater cercariae have not been previously identified. After experimentally simulating natural subarctic conditions during warmer and colder months (13 and 6°C), a statistical approach identifying changes in the tendency of cercarial activity loss and mortality data was used to detect differences in three trematode genera, represented by four taxa (Diplostomum spp., Apatemon spp., small- and large-sized Plagiorchis spp.). A strong temperature-dependent response was identified in both activity loss and mortality in all taxa, with Diplostomum spp. cercariae showing the most gradual changes compared to other taxa. Furthermore, whilst activity loss and mortality dynamics could not be divided into ‘fish- vs invertebrate-infecting cercariae’ groups, the detected taxa-specific responses in relation to life-history traits indicate the swimming behaviour of cercariae and energy allocation among larvae individuals as the main drivers. Cercariae exploit the short transmission window that allows a stable continuance of trematodes’ life cycles in high-latitude freshwater ecosystems.
- Klíčová slova
- High latitude regions, larval stages, life cycle, parasite, transmission strategies,
- MeSH
- cerkárie fyziologie MeSH
- ekosystém * MeSH
- sladká voda MeSH
- teplota MeSH
- Trematoda * fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH