Nejvíce citovaný článek - PubMed ID 30871322
Co-processed excipients for direct compression of tablets
Probiotics have been used in human and veterinary medicine to increase resistance to pathogens and provide protection against external impacts for many years. Pathogens are often transmitted to humans through animal product consumption. Therefore, it is assumed that probiotics protecting animals may also protect the humans who consume them. Many tested strains of probiotic bacteria can be used for individualized therapy. The recently isolated Lactobacillus plantarum R2 Biocenol™ has proven to be preferential in aquaculture, and potential benefits in humans are expected. A simple oral dosage form should be developed to test this hypothesis by a suitable preparation method, i.e., lyophilization, allowing the bacteria to survive longer. Lyophilizates were formed from silicates (Neusilin® NS2N; US2), cellulose derivates (Avicel® PH-101), and saccharides (inulin; saccharose; modified starch® 1500). They were evaluated for their physicochemical properties (pH leachate, moisture content, water absorption, wetting time, DSC tests, densities, and flow properties); their bacterial viability was determined in conditions including relevant studies over 6 months at 4 °C and scanned under an electron microscope. Lyophilizate composed of Neusilin® NS2N and saccharose appeared to be the most advantageous in terms of viability without any significant decrease. Its physicochemical properties are also suitable for capsule encapsulation, subsequent clinical evaluation, and individualized therapy.
- Klíčová slova
- antropozoonoses, individual treatment, lyophilization, principal component analysis, probiotic bacteria, viability of bacteria,
- Publikační typ
- časopisecké články MeSH
The utilization of co-processed excipients (CPEs) represents a novel approach to the preparation of orally disintegrating tablets by direct compression. Flow, consolidation, and compression properties of four lactose-based CPEs-Cellactose® 80, CombiLac®, MicroceLac® 100, and StarLac®-were investigated using different methods, including granulometry, powder rheometry, and tablet compaction under three pressures. Due to the similar composition and the same preparation technique (spray drying), the properties of CPEs and their compacts were generally comparable. The most pronounced differences were observed in flowability, undissolved fraction after 3 min and 24 h, energy of plastic deformation (E2), ejection force, consolidation behavior, and compact friability. Cellactose® 80 exhibited the most pronounced consolidation behavior, the lowest values of ejection force, and high friability of compacts. CombiLac® showed excellent flow properties but insufficient friability, except for compacts prepared at the highest compression pressure (182 MPa). MicroceLac® 100 displayed the poorest flow properties, lower ejection forces, and the best mechanical resistance of compacts. StarLac® showed excellent flow properties, the lowest amounts of undissolved fraction, the highest ejection force values, and the worst compact mechanical resistance. The obtained results revealed that higher compression pressures need to be used or further excipients have to be added to all tested materials in order to improve the friability and tensile strength of formed tablets, except for MicroceLac® 100.
- Klíčová slova
- Cellactose® 80, CombiLac®, MicroceLac® 100, StarLac®, co-processed excipients, spray drying,
- Publikační typ
- časopisecké články MeSH