Most cited article - PubMed ID 30903846
The effects of photon-upconversion nanoparticles on the growth of radish and duckweed: Bioaccumulation, imaging, and spectroscopic studies
The detection of cancer biomarkers in histological samples and blood is of paramount importance for clinical diagnosis. Current methods are limited in terms of sensitivity, hindering early detection of disease. We have overcome the shortcomings of currently available staining and fluorescence labeling methods by taking an integrative approach to establish photon-upconversion nanoparticles (UCNP) as a powerful platform for cancer detection. These nanoparticles are readily synthesized in different sizes to yield efficient and tunable short-wavelength light emission under near-infrared excitation, which eliminates optical background interference of the specimen. Here we present a protocol for the synthesis of UCNPs by high-temperature co-precipitation or seed-mediated growth by thermal decomposition, surface modification by silica or poly(ethylene glycol) that renders the particles resistant to nonspecific binding, and the conjugation of streptavidin or antibodies for biological detection. To detect blood-based biomarkers, we present an upconversion-linked immunosorbent assay for the analog and digital detection of the cancer marker prostate-specific antigen. When applied to immunocytochemistry analysis, UCNPs enable the detection of the breast cancer marker human epidermal growth factor receptor 2 with a signal-to-background ratio 50-fold higher than conventional fluorescent labels. UCNP synthesis takes 4.5 d, the preparation of the antibody-silica-UCNP conjugate takes 3 d, the streptavidin-poly(ethylene glycol)-UCNP conjugate takes 2-3 weeks, upconversion-linked immunosorbent assay takes 2-4 d and immunocytochemistry takes 8-10 h. The procedures can be performed after standard laboratory training in nanomaterials research.
- MeSH
- Immunosorbents MeSH
- Humans MeSH
- Biomarkers, Tumor MeSH
- Neoplasms * diagnosis MeSH
- Nanoparticles * chemistry MeSH
- Silicon Dioxide chemistry MeSH
- Polyethylene Glycols chemistry MeSH
- Streptavidin MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Immunosorbents MeSH
- Biomarkers, Tumor MeSH
- Silicon Dioxide MeSH
- Polyethylene Glycols MeSH
- Streptavidin MeSH
Immunohistochemistry (IHC) and immunocytochemistry (ICC) are widely used to identify cancerous cells within tissues and cell cultures. Even though the optical microscopy evaluation is considered the gold standard, the limited range of useful labels and narrow multiplexing capabilities create an imminent need for alternative readout techniques. Laser-induced breakdown spectroscopy (LIBS) enables large-scale multi-elemental analysis of the surface of biological samples, e.g., thin section or cell pellet. It is, therefore, a potential alternative for IHC and ICC readout of various labels or tags (Tag-LIBS approach). Here, we introduce Tag-LIBS as a method for the specific determination of HER2 biomarker. The cell pellets were labeled with streptavidin-conjugated upconversion nanoparticles (UCNP) through a primary anti-HER2 antibody and a biotinylated secondary antibody. The LIBS scanning enabled detecting the characteristic elemental signature of yttrium as a principal constituent of UCNP, thus indirectly providing a reliable way to differentiate between HER2-positive BT-474 cells and HER2-negative MDA-MB-231 cells. The comparison of results with upconversion optical microscopy and luminescence intensity scanning confirmed that LIBS is a promising alternative for the IHC and ICC readout.
- Keywords
- Immunocytochemistry, Immunohistochemistry, Laser-induced breakdown spectroscopy, Photon-upconversion nanoparticles, Tag-LIBS,
- MeSH
- Fluorides chemistry radiation effects MeSH
- Antibodies, Immobilized immunology MeSH
- Immunohistochemistry methods MeSH
- Humans MeSH
- Biomarkers, Tumor analysis immunology MeSH
- Cell Line, Tumor MeSH
- Nanoparticles chemistry radiation effects MeSH
- Receptor, ErbB-2 analysis immunology MeSH
- Spectrum Analysis methods MeSH
- Feasibility Studies MeSH
- Light MeSH
- Thulium chemistry radiation effects MeSH
- Yttrium chemistry radiation effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- ERBB2 protein, human MeSH Browser
- Fluorides MeSH
- Antibodies, Immobilized MeSH
- Biomarkers, Tumor MeSH
- Receptor, ErbB-2 MeSH
- sodium yttriumtetrafluoride MeSH Browser
- Thulium MeSH
- Yttrium MeSH
Laser-induced breakdown spectroscopy (LIBS) was examined as a novel method for readout of microtiter plate immunoassays involving nanoparticles (NP). The so-called Tag-LIBS technique is a sensitive method for the detection of specific biomarkers. It was applied to the determination of NP labels using nanosecond ablation sampling. The NP labels were examined from the bottom of a standard 96-well microtiter plate. Thanks to the flexibility of LIBS instrumentation, both the plasma emission collection and the focusing optics arrangements can be collinearly arranged. The experiments showed that silver NPs and gold NPs can be readily quantified on the bottom of the microtiter plate. Utilizing this technique, a sandwich immunoassay for human serum albumin using streptavidin-coated AgNP labels was developed. The assay has a 10 ng·mL-1 detection limit which is comparable to the sensitivity of fluorometric readout. The main advantage of this LIBS technique is its wide scope in which it enables a detection of almost any type of NP labels, irrespective to any fluorescence or catalytic properties. Owing to the immediate signal response, the relatively simple instrumentation also enables assay automation. The LIBS capability of multi-elemental analyses makes it a promising and fast alternative to other readout techniques, in particular with respect to multiplexed detection of biomarkers. Graphical abstract Laser-induced breakdown spectroscopy (LIBS) is used as a novel readout method of nanoparticle-based immunoassays in microtiter plates. After formation of sandwich immunocomplex, the analyte concentration is quantified as the signal of Ag nanoparticle labels determined by LIBS.
- Keywords
- Collinear plasma collection, Gold nanoparticles, Laser ablation, Microtiter plate, Sandwich immunoassay, Silver nanoparticles, Streptavidin, Tag-LIBS,
- MeSH
- Biomarkers blood MeSH
- Immunoassay methods MeSH
- Metal Nanoparticles chemistry MeSH
- Lasers * MeSH
- Humans MeSH
- Serum Albumin, Human analysis MeSH
- Surface Properties MeSH
- Silver chemistry MeSH
- Particle Size MeSH
- Gold chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biomarkers MeSH
- Serum Albumin, Human MeSH
- Silver MeSH
- Gold MeSH