Most cited article - PubMed ID 30984316
Vaginal dryness: individualised patient profiles, risks and mitigating measures
An increasing interest in a healthy lifestyle raises questions about optimal body weight. Evidently, it should be clearly discriminated between the standardised "normal" body weight and individually optimal weight. To this end, the basic principle of personalised medicine "one size does not fit all" has to be applied. Contextually, "normal" but e.g. borderline body mass index might be optimal for one person but apparently suboptimal for another one strongly depending on the individual genetic predisposition, geographic origin, cultural and nutritional habits and relevant lifestyle parameters-all included into comprehensive individual patient profile. Even if only slightly deviant, both overweight and underweight are acknowledged risk factors for a shifted metabolism which, if being not optimised, may strongly contribute to the development and progression of severe pathologies. Development of innovative screening programmes is essential to promote population health by application of health risks assessment, individualised patient profiling and multi-parametric analysis, further used for cost-effective targeted prevention and treatments tailored to the person. The following healthcare areas are considered to be potentially strongly benefiting from the above proposed measures: suboptimal health conditions, sports medicine, stress overload and associated complications, planned pregnancies, periodontal health and dentistry, sleep medicine, eye health and disorders, inflammatory disorders, healing and pain management, metabolic disorders, cardiovascular disease, cancers, psychiatric and neurologic disorders, stroke of known and unknown aetiology, improved individual and population outcomes under pandemic conditions such as COVID-19. In a long-term way, a significantly improved healthcare economy is one of benefits of the proposed paradigm shift from reactive to Predictive, Preventive and Personalised Medicine (PPPM/3PM). A tight collaboration between all stakeholders including scientific community, healthcare givers, patient organisations, policy-makers and educators is essential for the smooth implementation of 3PM concepts in daily practice.
- Keywords
- Adults, Anorexia athletica, Anthropometrics, Artificial intelligence in medicine, BMI deviation, Big data management, Biomarker panel, Body fluids, Body weight, COVID-19, Cancers, Cardiovascular disease, Communicable, Deficits, Disease development, Elderly, Endothelin-1, Fat, Flammer syndrome, Health economy, Health policy, Healthcare, Hypoxic effects, Immune system, Individualised patient profile, Inflammation, Innovative population Screening Programme, Intentional, Manifestation, Medical imaging, Metabolic pathways, Microbiome, Modelling, Molecular patterns, Multi-level diagnostics, Multi-parametric analysis, Neurodegeneration, Neurology, Non-communicable disorders, Nutrition, Overweight, Pathology, Population health, Predictive preventive personalised medicine (3PM/PPPM), Pregnancy, Progression, ROS, Reproductive dysfunction, Sports medicine, Stroke, Systemic ischemia, Underweight, Unintentional, Vasoconstriction, Weight loss, Well-being, Wound healing, Youth,
- Publication type
- Journal Article MeSH
Metabolic reprogramming characterized by alterations in nutrient uptake and critical molecular pathways associated with cancer cell metabolism represents a fundamental process of malignant transformation. Melatonin (N-acetyl-5-methoxytryptamine) is a hormone secreted by the pineal gland. Melatonin primarily regulates circadian rhythms but also exerts anti-inflammatory, anti-depressant, antioxidant and anti-tumor activities. Concerning cancer metabolism, melatonin displays significant anticancer effects via the regulation of key components of aerobic glycolysis, gluconeogenesis, the pentose phosphate pathway (PPP) and lipid metabolism. Melatonin treatment affects glucose transporter (GLUT) expression, glucose-6-phosphate dehydrogenase (G6PDH) activity, lactate production and other metabolic contributors. Moreover, melatonin modulates critical players in cancer development, such as HIF-1 and p53. Taken together, melatonin has notable anti-cancer effects at malignancy initiation, progression and metastasing. Further investigations of melatonin impacts relevant for cancer metabolism are expected to create innovative approaches supportive for the effective prevention and targeted therapy of cancers.