Nejvíce citovaný článek - PubMed ID 31083229
The effects of intradialytic resistance training on muscle strength, psychological well-being, clinical outcomes and circulatory micro-ribonucleic acid profiles in haemodialysis patients: Protocol for a quasi-experimental study
Previous research shows the beneficial effects of an intradialytic resistance training (IRT) on muscle function in haemodialysis patients. However, patients vary highly in their functional responses to IRT, may be due to effects of age and sex heterogeneities in adaptation. Therefore, the aim of this study was to investigate the degree to which the effects of IRT on the muscle function of haemodialysis patients vary by age and sex. We included 57 patients who completed a 12-week IRT (EXG) and 33 patients who received no IRT (CNG) during haemodialysis. Muscle function (MF) was assessed using dynamometry before and after a 12-week intervention and after a 12-week follow-up. After the 12-week intervention, we found a moderation effect of age in the relative (%) change (p = 0.011) and absolute (Δ) change (p = 0.027) of MF, and a moderation effect of sex in %MF (p = 0.001), but not in ΔMF (p = 0.069). Regarding patients' age, the change of MF was only significantly different between EXG and CNG patients aged 60-70 years (%MF, EXG: + 34.6%, CNG: - 20.1%, p < 0.001; ΔMF, EXG: + 44.4 N, CNG: - 22.1 N, p < 0.001). Regarding patients' sex, the change of MF was only significantly different between EXG and CNG female patients (%MF, EXG: + 23.9%, CNG: - 23.6%, p < 0.001). Age and sex did not significantly moderate changes in MF measures after 12 weeks of follow-up. We conclude that both age and sex of haemodialysis patients affect their functional response to IRT in the short term.Trial Registration: Intradialytic Resistance Training in Haemodialysis Patients (IRTHEP)-#NCT03511924, 30/04/2018, https://clinicaltrials.gov/ct2/show/NCT03511924 .
- MeSH
- aklimatizace MeSH
- genetická heterogenita MeSH
- lidé středního věku MeSH
- lidé MeSH
- odporový trénink * MeSH
- pohlavní dimorfismus * MeSH
- senioři MeSH
- svaly MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cardiovascular comorbidities are independent risk factors for mortality in dialysis patients. MicroRNA signaling has an important role in vascular aging and cardiac health, while physical activity is a primary nonpharmacologic treatment for cardiovascular comorbidities in dialysis patients. To identify the relationships between muscle function, miRNA signaling pathways, the presence of vascular calcifications and the severity of cardiovascular comorbidities, we initially enrolled 90 subjects on hemodialysis therapy and collected complete data from 46 subjects. A group of 26 subjects inactiv group (INC) was monitored during 12 weeks of physical inactivity and another group of 20 patients exercise group (EXC) was followed during 12 weeks of intradialytic, moderate intensity, resistance training intervention applied three times per week. In both groups, we assessed the expression levels of myo-miRNAs, proteins, and muscle function (MF) before and after the 12-week period. Data on the presence of vascular calcifications and the severity of cardiac comorbidities were collected from the patients' EuCliD® records. Using a full structural equitation modelling of the total study sample, we found that the higher the increase in MF was observed in patients, the higher the probability of a decrease in the expression of miR-206 and TRIM63 and the lower severity of cardiac comorbidities. A reduced structural model in INC patients showed that the higher the decrease in MF, the higher the probability of the presence of calcifications and the higher severity of cardiac comorbidities. In EXC patients, we found that the higher the increase in MF, the lower the probability of higher severity of cardiovascular comorbidities.
- Klíčová slova
- calcification, cardiovascular health, dialysis, exercise, inactivity, microRNA,
- MeSH
- cévní endotel metabolismus MeSH
- cvičení fyziologie MeSH
- dialýza ledvin * MeSH
- kardiovaskulární nemoci krev genetika terapie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA biosyntéza krev genetika MeSH
- sedavý životní styl MeSH
- senioři MeSH
- stanovení celkové genové exprese metody MeSH
- stárnutí krev genetika MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mikro RNA MeSH
The miRNA-206 and miRNA-23a play an important role in muscle tissue hypertrophy, regeneration and atrophy. Both of these miRNAs have been highlighted as promising adaptation predictors; however, the available evidence on associations is inconclusive. Therefore, our aim was to assess the expression levels of these two miRNAs as predictors of change in muscle function during strength training and physical inactivity among dialysed patients. For this purpose, 46 haemodialysis patients were monitored for 12-weeks of either intradialytic strength training (EXG, n = 20) or physical inactivity during dialysis (CON, n = 26). In both groups of patients, we assessed the baseline expression levels of miRNA-23a and miRNA-206 and the isometric force generated during hip flexion (HF) contraction before and after the 12-week period. Among the EXG group, the expression of miRNA-206 predicted the change in HF (R2 = 0.63, p = 0.0005) much more strongly than the expression of miRNA-23a (R2 = 0.21, p = 0.027). Interestingly, baseline miRNA-23a (R2 = 0.30, p = 0.006) predicted the change in HF much more than miRNA-206 (p = ns) among the CON group. Our study indicates that the baseline expression of miRNA-206 could predict the response to strength training, while miRNA-23a could serve as a potential predictive marker of functional changes during physical inactivity in dialysis patients.
- MeSH
- biologické markery analýza MeSH
- dialýza ledvin metody MeSH
- fyziologická adaptace MeSH
- kondiční příprava zvířat * MeSH
- kosterní svaly metabolismus patofyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA analýza genetika MeSH
- odporový trénink * MeSH
- sedavý životní styl * MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- mikro RNA MeSH