Most cited article - PubMed ID 31096863
Interaction of synthesized nitrogen enriched graphene quantum dots with novel anti-Alzheimer's drugs: spectroscopic insights
Biomarkers are the most significant diagnosis tools tending towards unique approaches and solutions for the prevention and cure of Alzheimer's Disease (AD). The current report provides a clear perception of the concept of various biomarkers and their prominent features through analysis to provide a possible solution for the inhibition of events in AD. Scientists around the world truly believe that crucial hallmarks can serve as critical tools in the early diagnosis, cure, and prevention, as well as the future of medicine. The awareness and understanding of such biomarkers would provide solutions to the puzzled mechanism of this neuronal disorder. Some of the argued biomarkers in the present article are still in an experimental phase as they need to undergo specific clinical trials before they can be considered for treatment.
- Keywords
- Alzheimer’s disease, biomarkers, diagnosis., neurodegenerative diseases, tau protein, β-amyloid peptide,
- MeSH
- Alzheimer Disease * drug therapy diagnosis metabolism MeSH
- Amyloid beta-Peptides metabolism antagonists & inhibitors MeSH
- Biomarkers * analysis metabolism MeSH
- Humans MeSH
- tau Proteins metabolism antagonists & inhibitors MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Amyloid beta-Peptides MeSH
- Biomarkers * MeSH
- tau Proteins MeSH
Inhibiting the formation of amyloid fibrils is a crucial step in the prevention of the human neurological disorder, Alzheimer's disease (AD). Ionic liquid (IL) mediated interactions are an expedient approach that exhibits inhibition effects on amyloid fibrils. In view of the beneficial role of ILs, in this work we have explored complexation of anti-Alzheimer's drugs (i.e., tacrine and PC-37) and an amino acid-functionalized IL [AIL (4-PyC8)]. Maintaining standard physiological conditions, the binding mechanism, thermo-dynamical properties and binding parameters were studied by employing UV-vis, fluorescence, FTIR, 1H NMR, COSY and NOESY spectroscopy. The present investigation uncovers the fact that the interaction of anti-Alzheimer's drugs with 4-PyC8 is mediated through H-bonding and van der Waals forces. The Benesi-Hildebrand relation was used to evaluate the binding affinity and PC-37 showed the highest binding when complexed with 4-PyC8. FTIR spectra showed absorption bands at 3527.98 cm-1 and 3527.09 cm-1 for the PC-37 + 4-PyC8 system which is quite promising compared to tacrine. 1H-NMR experiments recorded deshielding for tacrine at relatively higher concentrations than PC-37. COSY investigations suggest that anti-Alzheimer's drugs after complexation with 4-PyC8 show a 1 : 1 ratio. The cross-peaks of the NOESY spectra involve correlations between anti-Alzheimer's drugs and AIL protons, indicating complexation between them. The observed results indicate that these complexes are expected to have a possible therapeutic role in reducing/inhibiting amyloid fibrils when incorporated into drug formulations.
- Publication type
- Journal Article MeSH