Most cited article - PubMed ID 31097785
Sphingosine-1-phosphate signalling drives an angiogenic transcriptional programme in diffuse large B cell lymphoma
Although chronic inflammation is implicated in the pathogenesis of diffuse large B-cell lymphoma (DLBCL), the mechanisms responsible are unknown. We demonstrate that the overexpression of the collagen receptor, DDR1, correlates with reduced expression of spindle checkpoint genes, with three transcriptional signatures of aneuploidy and with a higher frequency of copy number alterations, pointing to a potential role for DDR1 in the acquisition of aneuploidy in DLBCL. In support of this, we found that collagen treatment of primary germinal centre B cells transduced with DDR1, not only partially recapitulated the aberrant transcriptional programme of DLBCL but also downregulated the expression of CENPE, a mitotic spindle that has a crucial role in preventing chromosome mis-segregation. CENPE expression was also downregulated following DDR1 activation in two B-cell lymphoma lines and was lost in most DDR1-expressing primary tumours. Crucially, the inhibition of CENPE and the overexpression of a constitutively activated DDR1 were able to induce aneuploidy in vitro. Our findings identify a novel mechanistic link between DDR1 signalling and chromosome instability in B cells and provide novel insights into factors driving aneuploidy in DLBCL.
- Keywords
- TP53, CENPE, DDR1, DLBCL, aneuploidy, chromosome instability, collagen, mitotic spindle,
- MeSH
- Aneuploidy * MeSH
- B-Lymphocytes metabolism MeSH
- Chromosomal Instability * genetics MeSH
- Lymphoma, Large B-Cell, Diffuse * genetics pathology metabolism MeSH
- Collagen pharmacology MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Discoidin Domain Receptor 1 * genetics metabolism MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Signal Transduction MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DDR1 protein, human MeSH Browser
- Collagen MeSH
- Discoidin Domain Receptor 1 * MeSH
BACKGROUND: A total of 30-40% of diffuse large B cell lymphoma (DLBCL) patients will either not respond to the standard therapy or their disease will recur. The first-line treatment for DLBCL is rituximab and combination chemotherapy. This treatment involves the chemotherapy-induced recruitment of tumor-associated macrophages that recognize and kill rituximab-opsonized DLBCL cells. However, we lack insights into the factors responsible for the recruitment and functionality of macrophages in DLBCL tumors. METHODS: We have studied the effects of the immunomodulatory lipid sphingosine-1-phosphate (S1P) on macrophage activity in DLBCL, both in vitro and in animal models. RESULTS: We show that tumor-derived S1P mediates the chemoattraction of both monocytes and macrophages in vitro and in animal models, an effect that is dependent upon the S1P receptor S1PR1. However, S1P inhibited M1 macrophage-mediated phagocytosis of DLBCL tumor cells opsonized with the CD20 monoclonal antibodies rituximab and ofatumumab, an effect that could be reversed by an S1PR1 inhibitor. CONCLUSIONS: Our data show that S1P signaling can modulate macrophage recruitment and tumor cell killing by anti-CD20 monoclonal antibodies in DLBCL. The administration of S1PR1 inhibitors could enhance the phagocytosis of tumor cells and improve outcomes for patients.
- Keywords
- CD20 monoclonal antibodies, DLBCL, S1P, S1PR1, SPHK1, macrophages, ofatumumab, phagocytosis, rituximab,
- Publication type
- Journal Article MeSH