Nejvíce citovaný článek - PubMed ID 31134006
Herpesviruses are one of the most contagious DNA viruses that threaten human health, causing severe diseases, including, but not limited to, certain types of cancer and neurological complications. The overuse and misuse of anti-herpesvirus drugs are key factors leading to drug resistance. Therefore, targeting human herpesviruses with natural products is an attractive form of therapy, as it might improve treatment efficacy in therapy-resistant herpesviruses. Plant polyphenols are major players in the health arena as they possess diverse bioactivities. Hence, in this article, we comprehensively summarize the recent advances that have been attained in employing plant non-flavonoid polyphenols, such as phenolic acids, tannins and their derivatives, stilbenes and their derivatives, lignans, neolignans, xanthones, anthraquinones and their derivatives, curcuminoids, coumarins, furanocoumarins, and other polyphenols (phloroglucinol) as promising anti-herpesvirus drugs against various types of herpesvirus such as alpha-herpesviruses (herpes simplex virus type 1 and 2 and varicella-zoster virus), beta-herpesviruses (human cytomegalovirus), and gamma-herpesviruses (Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus). The molecular mechanisms of non-flavonoid polyphenols against the reviewed herpesviruses are also documented.
- Klíčová slova
- Epstein–Barr virus (EBV), HSV-1, HSV-2, Kaposi sarcoma-associated herpesvirus (KSHV), antiviral activity, herpes simplex virus, human cytomegalovirus (HCMV), natural products, non-flavonoid polyphenols, polyphenols, varicella-zoster virus (VZV),
- MeSH
- antivirové látky farmakologie terapeutické užití MeSH
- herpetické infekce * farmakoterapie MeSH
- infekce virem Epsteina-Barrové * farmakoterapie MeSH
- lidé MeSH
- polyfenoly farmakologie terapeutické užití MeSH
- virus Epsteinův-Barrové MeSH
- virus varicella zoster MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antivirové látky MeSH
- polyfenoly MeSH
Herpesviruses are DNA viruses that infect humans and animals with the ability to induce latent and lytic infections in their hosts, causing critical health complications. The enrolment of nutraceutical anti-herpesvirus drugs in clinical investigations with promising levels of reduced resistance, free or minimal cellular toxicity, and diverse mechanisms of action might be an effective way to defeat challenges that hurdle the progress of anti-herpesvirus drug development, including the problems with drug resistance and recurrent infections. Therefore, in this review, we aim to hunt down all investigations that feature the curative properties of curcumin, a principal bioactive phenolic compound of the spice turmeric, in regard to various human and animal herpesvirus infections and inflammation connected with these diseases. Curcumin was explored with potent antiherpetic actions against herpes simplex virus type 1 and type 2, human cytomegalovirus, Kaposi's sarcoma-associated herpesvirus, Epstein-Barr virus, bovine herpesvirus 1, and pseudorabies virus. The mechanisms and pathways by which curcumin inhibits anti-herpesvirus activities by targeting multiple steps in herpesvirus life/infectious cycle are emphasized. Improved strategies to overcome bioavailability challenges that limit its use in clinical practice, along with approaches and new directions to enhance the anti-herpesvirus efficacy of this compound, are also reviewed. According to the reviewed studies, this paper presents curcumin as a promising natural drug for the prevention and treatment of herpesvirus infections and their associated inflammatory diseases.
- Klíčová slova
- Curcuma longa L., curcumin, herpesviruses, inflammation, mechanisms and pathways, phenolics, viral infections,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
While few studies have revealed the biological properties of brassicasterol, a phytosterol, against some biological and molecular targets, it is believed that there are still many activities yet to be studied. In this work, brassicasterol exerts a therapeutic utility in an in vitro setting against herpes simplex virus type 1 (HSV-1) and Mycobacterium tuberculosis (Mtb) as well as a considerable inhibitory property against human angiotensin-converting enzyme (ACE) that plays a dynamic role in regulating blood pressure. The antireplicative effect of brassicasterol against HSV-1 is remarkably detected (50% inhibitory concentration (IC50): 1.2 µM; selectivity index (SI): 41.7), while the potency of its effect is ameliorated through the combination with standard acyclovir with proper SI (IC50: 0.7 µM; SI: 71.4). Moreover, the capacity of this compound to induce an adequate level of antituberculosis activity against all Mtb strains examined (minimum inhibitory concentration values ranging from 1.9 to 2.4 µM) is revealed. The anti-ACE effect (12.3 µg/mL; 91.2% inhibition) is also ascertained. Molecular docking analyses propose that the mechanisms by which brassicasterol induces anti-HSV-1 and anti-Mtb might be related to inhibiting vital enzymes involved in HSV-1 replication and Mtb cell wall biosynthesis. In summary, the obtained results suggest that brassicasterol might be promising for future anti-HSV-1, antituberculosis, and anti-ACE drug design.
- Klíčová slova
- ACE, HSV, HSV-1 DNA polymerase, HSV-1 TK, Mycobacterium tuberculosis, UDP-galactopyranose mutase, brassicasterol, human CDK2, phytosterols,
- Publikační typ
- časopisecké články MeSH