Most cited article - PubMed ID 31231763
Intragenomic heterogeneity of intergenic ribosomal DNA spacers in Cucurbita moschata is determined by DNA minisatellites with variable potential to form non-canonical DNA conformations
BACKGROUND: Polyploidisation often results in genome rearrangements that may involve changes in both the single-copy sequences and the repetitive genome fraction. In this study, we performed a comprehensive comparative analysis of repetitive DNA, with a particular focus on ribosomal DNA (rDNA), in Brachypodium hybridum (2n = 4x = 30, subgenome composition DDSS), an allotetraploid resulting from a natural cross between two diploid species that resemble the modern B. distachyon (2n = 10; DD) and B. stacei (2n = 20; SS). Taking advantage of the recurrent origin of B. hybridum, we investigated two genotypes, Bhyb26 and ABR113, differing markedly in their evolutionary age (1.4 and 0.14 Mya, respectively) and which resulted from opposite cross directions. To identify the origin of rDNA loci we employed cytogenetic and molecular methods (FISH, gCAPS and Southern hybridisation), phylogenetic and genomic approaches. RESULTS: Unlike the general maintenance of doubled gene dosage in B. hybridum, the rRNA genes showed a remarkable tendency towards diploidisation at both locus and unit levels. While the partial elimination of 35S rDNA units occurred in the younger ABR113 lineage, unidirectional elimination of the entire locus was observed in the older Bhyb26 lineage. Additionally, a novel 5S rDNA family was amplified in Bhyb26 replacing the parental units. The 35S and 5S rDNA units were preferentially eliminated from the S- and D-subgenome, respectively. Thus, in the more ancient B. hybridum lineage, Bhyb26, 5S and 35S rRNA genes are likely expressed from different subgenomes, highlighting the complexity of polyploid regulatory networks. CONCLUSION: Comparative analyses between two B. hybridum lineages of distinct evolutionary ages revealed that although the recent lineage ABR113 exhibited an additive pattern of rDNA loci distribution, the ancient lineage Bhyb26 demonstrated a pronounced tendency toward diploidisation manifested by the reduction in the number of both 35S and 5S loci. In conclusion, the age of the allopolyploid appears to be a decisive factor in rDNA turnover in B. hybridum.
- Keywords
- Brachypodium hybridum, 35S rDNA IGS, FISH, 5S rDNA NTS, nrITS, rDNA loci,
- MeSH
- Brachypodium * genetics MeSH
- Phylogeny * MeSH
- Genetic Variation MeSH
- Genome, Plant MeSH
- Genes, rRNA genetics MeSH
- Evolution, Molecular * MeSH
- Polyploidy * MeSH
- DNA, Ribosomal genetics MeSH
- RNA, Ribosomal genetics MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA, Ribosomal MeSH
- RNA, Ribosomal MeSH
Despite the widely accepted involvement of DNA methylation in the regulation of rDNA transcription, the relative participation of different cytosine methylation pathways is currently described only for a few model plants. Using PacBio, Bisulfite, and RNA sequencing; PCR; Southern hybridizations; and FISH, the epigenetic consequences of rDNA copy number variation were estimated in two T. porrifolius lineages, por1 and por2, the latter with more than twice the rDNA copy numbers distributed approximately equally between NORs on chromosomes A and D. The lower rDNA content in por1 correlated with significantly reduced (>90%) sizes of both D-NORs. Moreover, two (L and S) prominent rDNA variants, differing in the repetitive organization of intergenic spacers, were detected in por2, while only the S-rDNA variant was detected in por1. Transcriptional activity of S-rDNA in por1 was associated with secondary constriction of both A-NORs. In contrast, silencing of S-rDNA in por2 was accompanied by condensation of A-NORs, secondary constriction on D-NORs, and L-rDNA transcriptional activity, suggesting (i) bidirectional nucleolar dominance and (ii) association of S-rDNAs with A-NORs and L-rDNAs with D-NORs in T. porrifolius. Each S- and L-rDNA array was formed of several sub-variants differentiating both genetically (specific SNPs) and epigenetically (transcriptional efficiency and cytosine methylation). The most significant correlations between rDNA silencing and methylation were detected for symmetric CWG motifs followed by CG motifs. No correlations were detected for external cytosine in CCGs or asymmetric CHHs, where methylation was rather position-dependent, particularly for AT-rich variants. We conclude that variations in rDNA copy numbers in plant diploids can be accompanied by prompt epigenetic responses to maintain an appropriate number of active rDNAs. The methylation dynamics of CWGs are likely to be the most responsible for regulating silent and active rDNA states.
- Keywords
- 35S rDNA copy number variations, CCGs and CHHs, CWGs, Tragopogon porrifolius ssp. porrifolius, bidirectional nucleolar dominance, methylation dynamics of CGs, transcriptional silencing/activation,
- MeSH
- Chromosomes, Plant genetics MeSH
- Cytosine * metabolism MeSH
- Epigenesis, Genetic MeSH
- Transcription, Genetic MeSH
- DNA Methylation * MeSH
- Gene Expression Regulation, Plant MeSH
- DNA, Ribosomal * genetics MeSH
- Gene Silencing * MeSH
- DNA Copy Number Variations MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cytosine * MeSH
- DNA, Ribosomal * MeSH
Non-canonical structures (NCS) refer to the various forms of DNA that differ from the B-conformation described by Watson and Crick. It has been found that these structures are usual components of the genome, actively participating in its essential functions. The present review is focused on the nine kinds of NCS appearing or likely to appear in human ribosomal DNA (rDNA): supercoiling structures, R-loops, G-quadruplexes, i-motifs, DNA triplexes, cruciform structures, DNA bubbles, and A and Z DNA conformations. We discuss the conditions of their generation, including their sequence specificity, distribution within the locus, dynamics, and beneficial and detrimental role in the cell.
- Keywords
- DNA quadruplexes, Non-canonical DNA, R-loops, rDNA,
- MeSH
- G-Quadruplexes * MeSH
- Nucleic Acid Conformation MeSH
- Humans MeSH
- DNA, Ribosomal genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- DNA, Ribosomal MeSH
The classical model of concerted evolution states that hundreds to thousands of ribosomal DNA (rDNA) units undergo homogenization, making the multiple copies of the individual units more uniform across the genome than would be expected given mutation frequencies and gene redundancy. While the universality of this over 50-year-old model has been confirmed in a range of organisms, advanced high throughput sequencing techniques have also revealed that rDNA homogenization in many organisms is partial and, in rare cases, even apparently failing. The potential underpinning processes leading to unexpected intragenomic variation have been discussed in a number of studies, but a comprehensive understanding remains to be determined. In this work, we summarize information on variation or polymorphisms in rDNAs across a wide range of taxa amongst animals, fungi, plants, and protists. We discuss the definition and description of concerted evolution and describe whether incomplete concerted evolution of rDNAs predominantly affects coding or non-coding regions of rDNA units and if it leads to the formation of pseudogenes or not. We also discuss the factors contributing to rDNA variation, such as interspecific hybridization, meiotic cycles, rDNA expression status, genome size, and the activity of effector genes involved in genetic recombination, epigenetic modifications, and DNA editing. Finally, we argue that a combination of approaches is needed to target genetic and epigenetic phenomena influencing incomplete concerted evolution, to give a comprehensive understanding of the evolution and functional consequences of intragenomic variation in rDNA.
- MeSH
- Phylogeny MeSH
- Genetic Variation * MeSH
- Fungi genetics MeSH
- Evolution, Molecular MeSH
- Mutation MeSH
- Polymorphism, Genetic * MeSH
- DNA, Ribosomal genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- DNA, Ribosomal MeSH
Genes encoding 45S ribosomal RNA (rDNA) are known for their abundance within eukaryotic genomes and for their unstable copy numbers in response to changes in various genetic and epigenetic factors. Commonly, we understand as epigenetic factors (affecting gene expression without a change in DNA sequence), namely DNA methylation, histone posttranslational modifications, histone variants, RNA interference, nucleosome remodeling and assembly, and chromosome position effect. All these were actually shown to affect activity and stability of rDNA. Here, we focus on another phenomenon - the potential of DNA containing shortly spaced oligo-guanine tracts to form quadruplex structures (G4). Interestingly, sites with a high propensity to form G4 were described in yeast, animal, and plant rDNAs, in addition to G4 at telomeres, some gene promoters, and transposons, suggesting the evolutionary ancient origin of G4 as a regulatory module. Here, we present examples of rDNA promoter regions with extremely high potential to form G4 in two model plants, Arabidopsis thaliana and Physcomitrella patens. The high G4 potential is balanced by the activity of G4-resolving enzymes. The ability of rDNA to undergo these "structural gymnastics" thus represents another layer of the rich repertoire of epigenetic regulations, which is pronounced in rDNA due to its highly repetitive character.
- Keywords
- G4, quadruplex DNA, rDNA stability, replication, ribosomal RNA genes, transcription,
- Publication type
- Journal Article MeSH