Nejvíce citovaný článek - PubMed ID 31244332
Brain age in bipolar disorders: Effects of lithium treatment
Multivariate techniques better fit the anatomy of complex neuropsychiatric disorders which are characterized not by alterations in a single region, but rather by variations across distributed brain networks. Here, we used principal component analysis (PCA) to identify patterns of covariance across brain regions and relate them to clinical and demographic variables in a large generalizable dataset of individuals with bipolar disorders and controls. We then compared performance of PCA and clustering on identical sample to identify which methodology was better in capturing links between brain and clinical measures. Using data from the ENIGMA-BD working group, we investigated T1-weighted structural MRI data from 2436 participants with BD and healthy controls, and applied PCA to cortical thickness and surface area measures. We then studied the association of principal components with clinical and demographic variables using mixed regression models. We compared the PCA model with our prior clustering analyses of the same data and also tested it in a replication sample of 327 participants with BD or schizophrenia and healthy controls. The first principal component, which indexed a greater cortical thickness across all 68 cortical regions, was negatively associated with BD, BMI, antipsychotic medications, and age and was positively associated with Li treatment. PCA demonstrated superior goodness of fit to clustering when predicting diagnosis and BMI. Moreover, applying the PCA model to the replication sample yielded significant differences in cortical thickness between healthy controls and individuals with BD or schizophrenia. Cortical thickness in the same widespread regional network as determined by PCA was negatively associated with different clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. PCA outperformed clustering and provided an easy-to-use and interpret method to study multivariate associations between brain structure and system-level variables. PRACTITIONER POINTS: In this study of 2770 Individuals, we confirmed that cortical thickness in widespread regional networks as determined by principal component analysis (PCA) was negatively associated with relevant clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. Significant associations of many different system-level variables with the same brain network suggest a lack of one-to-one mapping of individual clinical and demographic factors to specific patterns of brain changes. PCA outperformed clustering analysis in the same data set when predicting group or BMI, providing a superior method for studying multivariate associations between brain structure and system-level variables.
- Klíčová slova
- MRI, bipolar disorder, body mass index, obesity, principal component analysis, psychiatry,
- MeSH
- analýza hlavních komponent * MeSH
- bipolární porucha * diagnostické zobrazování farmakoterapie patologie MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mladý dospělý MeSH
- mozek diagnostické zobrazování patologie MeSH
- mozková kůra diagnostické zobrazování patologie MeSH
- obezita * diagnostické zobrazování MeSH
- schizofrenie diagnostické zobrazování patologie farmakoterapie patofyziologie MeSH
- shluková analýza MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Obesity is highly prevalent and disabling, especially in individuals with severe mental illness including bipolar disorders (BD). The brain is a target organ for both obesity and BD. Yet, we do not understand how cortical brain alterations in BD and obesity interact. METHODS: We obtained body mass index (BMI) and MRI-derived regional cortical thickness, surface area from 1231 BD and 1601 control individuals from 13 countries within the ENIGMA-BD Working Group. We jointly modeled the statistical effects of BD and BMI on brain structure using mixed effects and tested for interaction and mediation. We also investigated the impact of medications on the BMI-related associations. RESULTS: BMI and BD additively impacted the structure of many of the same brain regions. Both BMI and BD were negatively associated with cortical thickness, but not surface area. In most regions the number of jointly used psychiatric medication classes remained associated with lower cortical thickness when controlling for BMI. In a single region, fusiform gyrus, about a third of the negative association between number of jointly used psychiatric medications and cortical thickness was mediated by association between the number of medications and higher BMI. CONCLUSIONS: We confirmed consistent associations between higher BMI and lower cortical thickness, but not surface area, across the cerebral mantle, in regions which were also associated with BD. Higher BMI in people with BD indicated more pronounced brain alterations. BMI is important for understanding the neuroanatomical changes in BD and the effects of psychiatric medications on the brain.
- Klíčová slova
- Body mass index, antipsychotics, bipolar disorders, cortical thickness, heterogeneity, lithium, obesity, surface area,
- MeSH
- bipolární porucha * patologie diagnostické zobrazování MeSH
- dospělí MeSH
- index tělesné hmotnosti * MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- mozková kůra * diagnostické zobrazování patologie MeSH
- obezita * patologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
Schizophrenia is frequently associated with obesity, which is linked with neurostructural alterations. Yet, we do not understand how the brain correlates of obesity map onto the brain changes in schizophrenia. We obtained MRI-derived brain cortical and subcortical measures and body mass index (BMI) from 1260 individuals with schizophrenia and 1761 controls from 12 independent research sites within the ENIGMA-Schizophrenia Working Group. We jointly modeled the statistical effects of schizophrenia and BMI using mixed effects. BMI was additively associated with structure of many of the same brain regions as schizophrenia, but the cortical and subcortical alterations in schizophrenia were more widespread and pronounced. Both BMI and schizophrenia were primarily associated with changes in cortical thickness, with fewer correlates in surface area. While, BMI was negatively associated with cortical thickness, the significant associations between BMI and surface area or subcortical volumes were positive. Lastly, the brain correlates of obesity were replicated among large studies and closely resembled neurostructural changes in major depressive disorders. We confirmed widespread associations between BMI and brain structure in individuals with schizophrenia. People with both obesity and schizophrenia showed more pronounced brain alterations than people with only one of these conditions. Obesity appears to be a relevant factor which could account for heterogeneity of brain imaging findings and for differences in brain imaging outcomes among people with schizophrenia.
MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness.
- Klíčová slova
- ENIGMA, MRI, bipolar disorder, cortical surface area, cortical thickness, mega-analysis, meta-analysis, neuroimaging, psychiatry, volume,
- MeSH
- bipolární porucha * diagnostické zobrazování patologie MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- metaanalýza jako téma MeSH
- mozková kůra * diagnostické zobrazování patologie MeSH
- multicentrické studie jako téma MeSH
- neurozobrazování * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
Individuals with bipolar disorders (BD) frequently suffer from obesity, which is often associated with neurostructural alterations. Yet, the effects of obesity on brain structure in BD are under-researched. We obtained MRI-derived brain subcortical volumes and body mass index (BMI) from 1134 BD and 1601 control individuals from 17 independent research sites within the ENIGMA-BD Working Group. We jointly modeled the effects of BD and BMI on subcortical volumes using mixed-effects modeling and tested for mediation of group differences by obesity using nonparametric bootstrapping. All models controlled for age, sex, hemisphere, total intracranial volume, and data collection site. Relative to controls, individuals with BD had significantly higher BMI, larger lateral ventricular volume, and smaller volumes of amygdala, hippocampus, pallidum, caudate, and thalamus. BMI was positively associated with ventricular and amygdala and negatively with pallidal volumes. When analyzed jointly, both BD and BMI remained associated with volumes of lateral ventricles and amygdala. Adjusting for BMI decreased the BD vs control differences in ventricular volume. Specifically, 18.41% of the association between BD and ventricular volume was mediated by BMI (Z = 2.73, p = 0.006). BMI was associated with similar regional brain volumes as BD, including lateral ventricles, amygdala, and pallidum. Higher BMI may in part account for larger ventricles, one of the most replicated findings in BD. Comorbidity with obesity could explain why neurostructural alterations are more pronounced in some individuals with BD. Future prospective brain imaging studies should investigate whether obesity could be a modifiable risk factor for neuroprogression.
BACKGROUND: Neurostructural alterations are often reported in first episode of psychosis (FEP), but there is heterogeneity in the direction and location of findings between individual studies. The reasons for this heterogeneity remain unknown. Obesity is disproportionately frequent already early in the course of psychosis and is associated with smaller brain volumes. Thus, we hypothesized that obesity may contribute to brain changes in FEP. METHOD: We analyzed MRI scans from 120 participants with FEP and 114 healthy participants. In primary analyses, we performed voxel-based morphometry (VBM) with small volume corrections to regions associated with FEP or obesity in previous meta-analyses. In secondary analyses, we performed whole-brain VBM analyses. RESULTS: In primary analyses, we found that when controlling for BMI, FEP had lower GM volume than healthy participants in a) left fronto-temporal region (pTFCE = 0.008) and b) left postcentral gyrus (pTFCE = 0.043). When controlling for FEP, BMI was associated with lower GM volume in left cerebellum (pTFCE < 0.001). In secondary analyses, we found that when controlling for BMI, FEP had lower GM volume than healthy participants in the a) cerebellum (pTFCE = 0.004), b) left frontal (pTFCE = 0.024), and c) right temporal cortex (pTFCE = 0.031). When controlling for FEP, BMI was associated with lower GM volume in cerebellum (pTFCE = 0.004). Levels of C-reactive protein, HDL and LDL-cholesterol correlated with obesity related neurostructural alterations. CONCLUSIONS: This study suggests that higher BMI, which is frequent in FEP, may contribute to cerebellar alterations in schizophrenia. As previous studies showed that obesity-related brain alterations may be reversible, our findings raise the possibility that improving the screening for and treatment of obesity and associated metabolic changes could preserve brain structure in FEP.
- Klíčová slova
- dyslipidemia, first-episode psychosis, low-grade inflammation, obesity, schizophrenia, voxel-based morphometry,
- Publikační typ
- časopisecké články MeSH