Most cited article - PubMed ID 31257025
Relaxed Selection Limits Lifespan by Increasing Mutation Load
Sex chromosomes have evolved repeatedly across eukaryotes. The emergence of a sex-determining (SD) locus is expected to progressively restrict recombination, driving convergent molecular differentiation. However, evidence from taxa like teleost fishes, representing over half of vertebrate species with unmatched diversity in SD systems, challenges this model. Teleost sex chromosomes are often difficult to detect as they experience frequent turnovers, resetting the differentiation process. Nothobranchius killifishes, which include the XY system shared by N. furzeri and N. kadleci and X1X2Y systems in six other species, offer a valuable model to study sex chromosome turnovers. We characterised X1X2Y systems in five killifish species and found that sex chromosomes evolved at least four times independently. Sex-determining regions resided near centromeres or predicted chromosome rearrangement breakpoints in N. brieni and N. guentheri, suggesting recombination cold spots may facilitate sex chromosome evolution. Chromosomes representing the XY system in N. furzeri/N. kadleci were sex-linked also in the outgroup Fundulosoma thierryi, with several genes, including gdf6, residing in the region of differentiation. Although the X1X2Y systems of N. guentheri, N. lourensi (both Coastal clade), and N. brieni (Kalahari clade) involved different chromosomes, they shared a potential SD region. We uncovered two sex-linked evolutionary strata of distinct age in N. guentheri. However, its potential SD gene amhr2 was located in the younger stratum and is hence unlikely to be the ancestral SD gene in this lineage. Our findings suggest recombination landscapes shape sex chromosome turnover and that certain synteny blocks are repeatedly co-opted as sex chromosomes in killifishes.
- Keywords
- bacterial artificial chromosome, chromosome fusion, pool‐seq, recombination suppression, sex chromosome differentiation, zoo‐FISH,
- MeSH
- Killifishes * genetics MeSH
- Phylogeny MeSH
- Evolution, Molecular * MeSH
- Sex Chromosomes * genetics MeSH
- Sex Determination Processes * genetics MeSH
- Recombination, Genetic MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Satellite DNA (satDNA) is a rapidly evolving class of tandem repeats, with some monomers being involved in centromere organization and function. To identify repeats associated with (peri)centromeric regions, we investigated satDNA across Southern and Coastal clades of African annual killifishes of the genus Nothobranchius. Molecular cytogenetic and bioinformatic analyses revealed that two previously identified satellites, designated here as NkadSat01-77 and NfurSat01-348, are associated with (peri)centromeres only in one lineage of the Southern clade. NfurSat01-348 was, however, additionally detected outside centromeres in three members of the Coastal clade. We also identified a novel satDNA, NrubSat01-48, associated with (peri)centromeres in N. foerschi, N. guentheri, and N. rubripinnis. Our findings revealed fast turnover of satDNA associated with (peri)centromeres and different trends in their evolution in two clades of the genus Nothobranchius.
- Keywords
- Centromere drive, Constitutive heterochromatin, RepeatExplorer, Repetitive sequences, satDNA,
- MeSH
- Centromere genetics MeSH
- Killifishes * genetics MeSH
- Fundulidae * genetics MeSH
- Evolution, Molecular MeSH
- DNA, Satellite MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Satellite MeSH
The karyotype differentiation of the twelve known members of the Nothobranchiusugandensis Wildekamp, 1994 species group is reviewed and the karyotype composition of seven of its species is described herein for the first time using a conventional cytogenetic protocol. Changes in the architecture of eukaryotic genomes often have a major impact on processes underlying reproductive isolation, adaptation and diversification. African annual killifishes of the genus Nothobranchius Peters, 1868 (Teleostei: Nothobranchiidae), which are adapted to an extreme environment of ephemeral wetland pools in African savannahs, feature extensive karyotype evolution in small, isolated populations and thus are suitable models for studying the interplay between karyotype change and species evolution. The present investigation reveals a highly conserved diploid chromosome number (2n = 36) but a variable number of chromosomal arms (46-64) among members of the N.ugandensis species group, implying a significant role of pericentric inversions and/or other types of centromeric shift in the karyotype evolution of the group. When superimposed onto a phylogenetic tree based on molecular analyses of two mitochondrial genes the cytogenetic characteristics did not show any correlation with the phylogenetic relationships within the lineage. While karyotypes of many other Nothobranchius spp. studied to date diversified mainly via chromosome fusions and fissions, the N.ugandensis species group maintains stable 2n and the karyotype differentiation seems to be constrained to intrachromosomal rearrangements. Possible reasons for this difference in the trajectory of karyotype differentiation are discussed. While genetic drift seems to be a major factor in the fixation of chromosome rearrangements in Nothobranchius, future studies are needed to assess the impact of predicted multiple inversions on the genome evolution and species diversification within the N.ugandensis species group.
- Keywords
- 2n uniformity, chromosome evolution, chromosome inversion, chromosomes, cytogenetics, karyotype variability,
- Publication type
- Journal Article MeSH
The evolutionary forces shaping life history divergence within species are largely unknown. Turquoise killifish display differences in lifespan among wild populations, representing an ideal natural experiment in evolution and diversification of life history. By combining genome sequencing and population genetics, we investigate the evolutionary forces shaping lifespan among wild turquoise killifish populations. We generate an improved reference genome assembly and identify genes under positive and purifying selection, as well as those evolving neutrally. Short-lived populations from the outer margin of the species range have small population size and accumulate deleterious mutations in genes significantly enriched in the WNT signaling pathway, neurodegeneration, cancer and the mTOR pathway. We propose that limited population size due to habitat fragmentation and repeated population bottlenecks, by increasing the genome-wide mutation load, exacerbates the effects of mutation accumulation and cumulatively contribute to the short adult lifespan.
- Keywords
- aging, evolution, evolutionary biology, genetics, genomics, lifespan, nothobranchius furzeri, turquoise killifish,
- MeSH
- Mutation Accumulation * MeSH
- Biological Evolution MeSH
- Longevity genetics MeSH
- Ecosystem MeSH
- Fundulidae MeSH
- Genome genetics MeSH
- Population Density * MeSH
- Models, Animal MeSH
- Evolution, Molecular * MeSH
- Aging genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH