Nejvíce citovaný článek - PubMed ID 25969869
Satellite DNA (satDNA) is a rapidly evolving class of tandem repeats, with some monomers being involved in centromere organization and function. To identify repeats associated with (peri)centromeric regions, we investigated satDNA across Southern and Coastal clades of African annual killifishes of the genus Nothobranchius. Molecular cytogenetic and bioinformatic analyses revealed that two previously identified satellites, designated here as NkadSat01-77 and NfurSat01-348, are associated with (peri)centromeres only in one lineage of the Southern clade. NfurSat01-348 was, however, additionally detected outside centromeres in three members of the Coastal clade. We also identified a novel satDNA, NrubSat01-48, associated with (peri)centromeres in N. foerschi, N. guentheri, and N. rubripinnis. Our findings revealed fast turnover of satDNA associated with (peri)centromeres and different trends in their evolution in two clades of the genus Nothobranchius.
- Klíčová slova
- Centromere drive, Constitutive heterochromatin, RepeatExplorer, Repetitive sequences, satDNA,
- MeSH
- centromera genetika MeSH
- Cyprinodontidae * genetika MeSH
- Fundulidae * genetika MeSH
- molekulární evoluce MeSH
- satelitní DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- satelitní DNA MeSH
Sex change (sequential hermaphroditism) has evolved repeatedly in teleost fishes when demographic conditions mediate fundamentally different sex-specific returns for individuals of particular age and size. We investigated the conditions for potential sex change in an annual killifish (Millerichthys robustus) from temporary pools in Mexico. In natural populations, we detected adults with intersex colouration and gonads. Therefore, we experimentally tested whether this apparent sex change can be generated by manipulation of ecological and social conditions, rather than being caused by environmental disturbance. We demonstrated functional protogynous (female-to-male) sex change in 60% replicates, when groups of five females interacted and had a visual and olfactory cue of a male. Only one female changed sex in any given replicate. The sex change never occurred in isolated females. Protandrous (male-to-female) hermaphroditism was not recorded. We characterized gradual changes in behaviour, colouration and gonad structure during the sex change process. The first behavioural signs of sex change were observed after 23 days. Secondary males spawned successfully after 75 days. We discuss the adaptive potential of sex change in short-lived annual fishes through the seasonal decline of males, and during colonization of new habitats. This is the first observation of functional hermaphroditism in an annual killifish.
- MeSH
- Cyprinodontiformes * MeSH
- Fundulidae * MeSH
- poruchy sexuálního vývoje * MeSH
- procesy určující pohlaví MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Severní Amerika MeSH
The evolutionary forces shaping life history divergence within species are largely unknown. Turquoise killifish display differences in lifespan among wild populations, representing an ideal natural experiment in evolution and diversification of life history. By combining genome sequencing and population genetics, we investigate the evolutionary forces shaping lifespan among wild turquoise killifish populations. We generate an improved reference genome assembly and identify genes under positive and purifying selection, as well as those evolving neutrally. Short-lived populations from the outer margin of the species range have small population size and accumulate deleterious mutations in genes significantly enriched in the WNT signaling pathway, neurodegeneration, cancer and the mTOR pathway. We propose that limited population size due to habitat fragmentation and repeated population bottlenecks, by increasing the genome-wide mutation load, exacerbates the effects of mutation accumulation and cumulatively contribute to the short adult lifespan.
- Klíčová slova
- aging, evolution, evolutionary biology, genetics, genomics, lifespan, nothobranchius furzeri, turquoise killifish,
- MeSH
- akumulace mutací * MeSH
- biologická evoluce MeSH
- dlouhověkost genetika MeSH
- ekosystém MeSH
- Fundulidae MeSH
- genom genetika MeSH
- hustota populace * MeSH
- modely u zvířat MeSH
- molekulární evoluce * MeSH
- stárnutí genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: African annual killifishes (Nothobranchius spp.) are adapted to seasonally desiccating habitats (ephemeral pools), surviving dry periods as dormant eggs. Given their peculiar life history, geographic aspects of their diversity uniquely combine patterns typical for freshwater taxa (river basin structure and elevation gradient) and terrestrial animals (rivers acting as major dispersal barriers). However, our current knowledge on fine-scale inter-specific and intra-specific genetic diversity of African annual fish is limited to a single, particularly dry region of their distribution (subtropical Mozambique). Using a widespread annual killifish from coastal Tanzania and Kenya, we tested whether the same pattern of genetic divergence pertains to a wet equatorial region in the centre of Nothobranchius distribution. RESULTS: In populations of Nothobranchius melanospilus species group across its range, we genotyped a part of mitochondrial cytochrome oxidase subunit 1 (COI) gene (83 individuals from 22 populations) and 10 nuclear microsatellite markers (251 individuals from 16 populations). We found five lineages with a clear phylogeographic structure but frequent secondary contact. Mitochondrial lineages were largely congruent with main population genetic clusters identified on microsatellite markers. In the upper Wami basin, populations are isolated as a putative Nothobranchius prognathus, but include also a population from a periphery of the middle Ruvu basin. Other four lineages (including putative Nothobranchius kwalensis) coexisted in secondary contact zones, but possessed clear spatial pattern. Main river channels did not form apparent barriers to dispersal. The most widespread lineage had strong signal of recent population expansion. CONCLUSIONS: We conclude that dispersal of a Nothobranchius species from a wet part of the genus distribution (tropical lowland) is not constrained by main river channels and closely related lineages frequently coexist in secondary contact zones. We also demonstrate contemporary connection between the Ruvu and Rufiji river basins. Our data do not provide genetic support for existence of recently described cryptic species from N. melanospilus complex, but cannot resolve this issue.
- Klíčová slova
- Dispersal, Eastern Africa, Historical demography, River morphology, Temporary pool, mtDNA,
- MeSH
- Cyprinodontidae genetika MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- genetická variace * MeSH
- genetický drift MeSH
- mikrosatelitní repetice MeSH
- mitochondriální DNA genetika MeSH
- populační genetika MeSH
- řeky MeSH
- respirační komplex IV genetika MeSH
- sladká voda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Tanzanie MeSH
- Názvy látek
- mitochondriální DNA MeSH
- respirační komplex IV MeSH
The turquoise killifish, Nothobranchius furzeri, is a promising vertebrate model in ageing research and an emerging model organism in genomics, regenerative medicine, developmental biology and ecotoxicology. Its lifestyle is adapted to the ephemeral nature of shallow pools on the African savannah. Its rapid and short active life commences when rains fill the pool: fish hatch, grow rapidly and mature in as few as two weeks, and then reproduce daily until the pool dries out. Its embryos then become inactive, encased in the dry sediment and protected from the harsh environment until the rains return. This invertebrate-like life cycle (short active phase and long developmental arrest) combined with a vertebrate body plan provide the ideal attributes for a laboratory animal.
- Klíčová slova
- Ageing, Natural History, Nothobranchius furzeri, Senescence, The Natural History of Model Organisms, Turquoise killifish, ecology, evolutionary biology,
- MeSH
- Cyprinodontiformes genetika růst a vývoj fyziologie MeSH
- dieta MeSH
- ekosystém * MeSH
- embryo nesavčí fyziologie MeSH
- modely u zvířat MeSH
- pigmentace MeSH
- sexuální chování zvířat MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Adaptive radiations are triggered by ecological opportunity - the access to novel niche domains with abundant available resources that facilitate the formation of new ecologically divergent species. Therefore, as new species saturate niche space, clades experience a diversity-dependent slowdown of diversification over time. At the other extreme of the radiation continuum, non-adaptively radiating lineages undergo diversification with minimal niche differentiation when 'spatial opportunity' (i.e. areas with suitable 'ancestral' ecological conditions) is available. Traditionally, most research has focused on adaptive radiations, while empirical studies on non-adaptive radiations remain lagging behind. A prolific clade of African fish with extremely short lifespan (Nothobranchius killifish), show the key evolutionary features of a candidate non-adaptive radiation - primarily allopatric species with minimal niche and phenotypic divergence. Here, we test the hypothesis that Nothobranchius killifish have non-adaptively diversified. We employ phylogenetic modelling to investigate the tempo and mode of macroevolutionary diversification of these organisms. RESULTS: Nothobranchius diversification has proceeded with minor niche differentiation and minimal morphological disparity among allopatric species. Additionally, we failed to identify evidence for a role of body size or biogeography in influencing diversification rates. Diversification has been homogeneous within this genus, with the only hotspot of species-richness not resulting from rapid diversification. However, species in sympatry show higher disparity, which may have been caused by character displacement among coexisting species. CONCLUSIONS: Nothobranchius killifish have proliferated following the tempo and mode of a non-adaptive radiation. Our study confirms that this exceptionally short-lived group have diversified with minimal divergent niche adaptation, while one group of coexisting species seems to have facilitated spatial overlap among these taxa via the evolution of ecological character displacement.
- Klíčová slova
- Diversification, Macroevolution, Non-adaptive radiation, Nothobranchius, Spatial opportunity, Speciation,
- MeSH
- biodiverzita * MeSH
- biologická evoluce * MeSH
- druhová specificita MeSH
- Fundulidae fyziologie MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- fyziologická adaptace * MeSH
- pravděpodobnostní funkce MeSH
- velikost těla MeSH
- vznik druhů (genetika) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH