Live fast, diversify non-adaptively: evolutionary diversification of exceptionally short-lived annual killifishes

. 2019 Jan 09 ; 19 (1) : 10. [epub] 20190109

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30626330
Odkazy

PubMed 30626330
PubMed Central PMC6327596
DOI 10.1186/s12862-019-1344-0
PII: 10.1186/s12862-019-1344-0
Knihovny.cz E-zdroje

BACKGROUND: Adaptive radiations are triggered by ecological opportunity - the access to novel niche domains with abundant available resources that facilitate the formation of new ecologically divergent species. Therefore, as new species saturate niche space, clades experience a diversity-dependent slowdown of diversification over time. At the other extreme of the radiation continuum, non-adaptively radiating lineages undergo diversification with minimal niche differentiation when 'spatial opportunity' (i.e. areas with suitable 'ancestral' ecological conditions) is available. Traditionally, most research has focused on adaptive radiations, while empirical studies on non-adaptive radiations remain lagging behind. A prolific clade of African fish with extremely short lifespan (Nothobranchius killifish), show the key evolutionary features of a candidate non-adaptive radiation - primarily allopatric species with minimal niche and phenotypic divergence. Here, we test the hypothesis that Nothobranchius killifish have non-adaptively diversified. We employ phylogenetic modelling to investigate the tempo and mode of macroevolutionary diversification of these organisms. RESULTS: Nothobranchius diversification has proceeded with minor niche differentiation and minimal morphological disparity among allopatric species. Additionally, we failed to identify evidence for a role of body size or biogeography in influencing diversification rates. Diversification has been homogeneous within this genus, with the only hotspot of species-richness not resulting from rapid diversification. However, species in sympatry show higher disparity, which may have been caused by character displacement among coexisting species. CONCLUSIONS: Nothobranchius killifish have proliferated following the tempo and mode of a non-adaptive radiation. Our study confirms that this exceptionally short-lived group have diversified with minimal divergent niche adaptation, while one group of coexisting species seems to have facilitated spatial overlap among these taxa via the evolution of ecological character displacement.

Zobrazit více v PubMed

Simpson GG. The major features of evolution. New York: Columbia University Press; 1953.

Schluter D. The ecology of adaptive radiation. Oxford: Oxford University Press; 2000.

Losos JB. Adaptive radiation, ecological opportunity, and evolutionary determinism. Am Nat. 2010;175:623–639. doi: 10.1086/652433. PubMed DOI

Yoder JB, Clancey E, Des Roches S, Eastman JM, Gentry L, Godsoe W, Hagey TJ, Jochimsen D, Oswald BP, Robertson J, Sarver BAJ, Schenk JJ, Spear SF, Harmon LJ. Ecological opportunity and the origin of adaptive radiation. J Evol Biol. 2010;23:1581–1596. doi: 10.1111/j.1420-9101.2010.02029.x. PubMed DOI

Rabosky DL, Lovette IJ. Explosive evolutionary radiations: decreasing speciation or increasing extinction through time? Evolution. 2008;62:1866–1875. doi: 10.1111/j.1558-5646.2008.00409.x. PubMed DOI

Rabosky DL, Lovette IJ. Density-dependent diversification in north American wood warblers. Proc R Soc B. 2008;275:2363–2371. doi: 10.1098/rspb.2008.0630. PubMed DOI PMC

Phillimore AB, Price TD. Density-Dependent Cladogenesis in Birds. PLoS Biol. 2008;6:e71. doi: 10.1371/journal.pbio.0060071. PubMed DOI PMC

Etienne RS, Haegeman B, Stadler T, Aze T, Pearson PN, Purvis A, Phillimore AB. Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record. Proc R Soc B. 2012;279:1300–1309. doi: 10.1098/rspb.2011.1439. PubMed DOI PMC

Price TD, Hooper DM, Buchanan CD, Johansson US, Tietze DT, Alström P, Olsson U, Ghosh-Harihar M, Ishtiaq F, Gupta SK, Martens J, Harr B, Singh P, Mohan D. Niche filling slows the diversification of Himilayan songbirds. Nature. 2014;509:222–225. doi: 10.1038/nature13272. PubMed DOI

Rabosky DL. Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clade and regions. Ecol Lett. 2009;12:735–743. doi: 10.1111/j.1461-0248.2009.01333.x. PubMed DOI

Rabosky DL, Glor RE. Equilibrium speciation dynamics in model adaptive radiation of island lizards. PNAS. 2010;107:22178–22183. doi: 10.1073/pnas.1007606107. PubMed DOI PMC

Ezard THG, Purvis A. Environmental changes define ecological limits to species richness and reveal the mode of macroevolutionary competition. Ecol Lett. 2016;19:899–906. doi: 10.1111/ele.12626. PubMed DOI PMC

Simões M, Breitkreuz L, Alvarado M, Baca S, Cooper JC, Heins L, Herzog K, Lieberman BS. The evolving theory of evolutionary radiations. Trends Ecol Evol. 2016;31:27–34. doi: 10.1016/j.tree.2015.10.007. PubMed DOI

Wiens JJ, Graham CH. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst. 2005;36:519–539. doi: 10.1146/annurev.ecolsys.36.102803.095431. DOI

Rundell RJ, Price TD. Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends Ecol Evol. 2009;24:394–399. doi: 10.1016/j.tree.2009.02.007. PubMed DOI

Wiens JJ. Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution. 2004;58:193–197. doi: 10.1111/j.0014-3820.2004.tb01586.x. PubMed DOI

Gittenberger E. What about non-adaptive radiation? Biol J Linn Soc. 1991;43:263–272. doi: 10.1111/j.1095-8312.1991.tb00598.x. DOI

Reaney AM, Saldarriage-Córdoba M, Pincheira-Donoso D. Macroevolutionary diversification with limited niche disparity in a species-rich lineage of cold-climate lizards. BMC Evol Biol. 2018;18:16. doi: 10.1186/s12862-018-1133-1. PubMed DOI PMC

Harmon LJ, Schulter JA, Larson A, Tempo LJB. Mode of evolutionary radiation in Iguanian lizards. Science. 2003;301:961–964. doi: 10.1126/science.1084786. PubMed DOI

Seehausen O. African cichlid fish: a model system in adaptive radiation research. Proc R Soc B. 2006;273:1987–1998. doi: 10.1098/rspb.2006.3539. PubMed DOI PMC

Harmon LJ, Losos JB, Davies TJ, Gillespie RG, Gittleman JL, Jennings WB, Kozak KH, McPeek MA, Moreno-Roark F, Near TJ, Purvis A, Ricklefs RE, Schluter D, Schulter JA, Seehausen O, Sidlauskas BL, Torres-Carvajal O, Weir JT, Mooers AØ. Early bursts of body size and shape evolution are rare in comparative data. Evolution. 2010;64:2385–2396. PubMed

Burbrink FT, Ruane S, Pyron RA. When are adaptive radiation replicated in areas? Ecological opportunity and unexceptional diversification in west Indian dipsadine snakes (Colubridae: Alsophiini) J Biogeogr. 2012;39:465–475. doi: 10.1111/j.1365-2699.2011.02621.x. DOI

Pincheira-Donoso D, Harvey LP, Ruta M. What defines an adaptive radiation? Macroevolutionary diversification dynamics of an exceptionally species-rich continental lizard radiation. BMC Evol Biol. 2015;15:153. doi: 10.1186/s12862-015-0435-9. PubMed DOI PMC

Wilke T, Benke M, Albrecht C, Bichain JM. The neglected side of the coin: non-adaptive radiations in spring snails (Bythinella spp.) In: Glaubrecht M, editor. Evolution in action. Berlin: Springer; 2010. pp. 551–578.

Kozak KH, Weisrock DW, Larson A. Rapid lineage accumulation in a non-adaptive radiation: phylogenetic analysis of diversification rates in eastern north American woodland salamanders (Plethodontidae: Plethodon) Proc R Soc B. 2006;273:539–546. doi: 10.1098/rspb.2005.3326. PubMed DOI PMC

Rowe KC, Aplin KP, Baverstock PR, Moritz C. Recent and rapid speciation with limited morphological disparity in the genus Rattus. Syst Biol. 2011;60:188–203. doi: 10.1093/sysbio/syq092. PubMed DOI

LaBarbera M. Analyzing body size as a factor in ecology and evolution. Annu Rev Ecol Syst. 1989;20:97–117. doi: 10.1146/annurev.es.20.110189.000525. DOI

Peters RH. The ecological implication of body size. Cambridge: Cambridge University Press; 1983.

Uyeda JC, Hansen TF, Arnold SJ, Pienaar J. The million-year wait for macroevolutionary bursts. PNAS. 2011;108:15908–15913. doi: 10.1073/pnas.1014503108. PubMed DOI PMC

Rabosky DL, Santini F, Eastman J, Smith SA, Sidlauskas B, Chang J, Alfaro ME. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat Commun. 2013;4(1958). PubMed

Wourms JP. The developmental biology of annual fishes. III. Pre-embryonic and embryonic diapause of variable duration in the eggs of annual fishes. J Exp Zool. 1972;182:389–414. doi: 10.1002/jez.1401820310. PubMed DOI

Watters BR. The ecology and distribution of Nothobranchius fishes. J Am Killifish Assoc. 2009;42:37–76.

Dorn A, Ng’oma E, Janko K, Reichwald K, Polačik M, Platzer M, Cellerino A, Reichard M. Phylogeny, genetic variability and colour polymorphism of an emerging animal model: the short-lived annual Nothobranchius fishes from southern Mozambique. Mol Phylogenet Evol. 2011;61:739–749. doi: 10.1016/j.ympev.2011.06.010. PubMed DOI

Bartáková V, Reichard M, Janko K, Polačik M, Blažek R, Reichwald K, Cellerino A, Bryja J. Strong population genetic structuring in an annual fish, Nothobranchius furzeri, suggests multiple savannah refugia in southern Mozambique. BMC Evol Biol. 2013;13:196. doi: 10.1186/1471-2148-13-196. PubMed DOI PMC

Valdesalici S, Cellerino A. Extremely short lifespan in the annual fish Nothobranchius furzeri. Proc R Soc B. 2003;270:S189–S191. doi: 10.1098/rsbl.2003.0048. PubMed DOI PMC

Vrtílek M, Žák J, Polačik M, Blažek R, Reichard M. Longitudinal demographic study of wild populations of African annual killifish. Sci Rep. 2018;8:4774. doi: 10.1038/s41598-018-22878-6. PubMed DOI PMC

Dorn A, Musilova Z, Platzer M, Reichwald K, Cellerino A. The strange case of east African annual fishes: aridification correlates with diversification for a savannah aquatic group? BMC Evol Biol. 2014;14:210. doi: 10.1186/s12862-014-0210-3. PubMed DOI PMC

Bartáková V, Reichard M, Blažek R, Polačik M, Bryja J. Terrestrial fishes: rivers are barriers to gene flow in annual fishes from the African savanna. J Biogeogr. 2015;42:1832–1844. doi: 10.1111/jbi.12567. DOI

Froese R, Pauly D. FishBase. 2016. http://www.fishbase.org. Accessed Oct 2016.

Wildekamp RH. A world of killies: atlas of the oviparous cyprindontiform fishes of the world. 4. Elyria: American killifish association; 2004.

Reichard M. The evolutionary ecology of African annual fishes. In: Berois N, García G, de Sá R, editors. Annual fishes: life history strategy, diversity, and evolution. Boca Raton: CRC Press; 2015. pp. 133–158.

Costa WJEM. Comparative morphology, phylogeny, and classification of African seasonal killifishes of the tribe Nothobranchiini (Cyprinodontiformes: Aplocheilidae). Zoo J Linn Soc. 2018;184:115–35. 10.1093.zoolinnean/zlx102. DOI

Seegers L. Aqualog Killifishes of the World: Old World Killis II. Mörfelden-Walldorf: Aquaristik; 1997.

Pincheira-Donoso D, Tregenza T, Butlin RK, Hodgson D. Sexes and species as rival units of niche saturation during community assembly. Glob Ecol Biogeogr. 2018;27:593–603. doi: 10.1111/geb.12722. DOI

Reichard M, Janáč M, Polačik M, Blažek R, Vrtílek M. Community assembly in Nothobranchius annual fishes: nested patterns, environmental niche and biogeographic history. Ecol Evol. 2017;7:2294–2306. doi: 10.1002/ece3.2851. PubMed DOI PMC

Wildekamp RH. A world of killies: atlas of the oviparous cyprindontiform fishes of the world. 1. Elyria: American Killifish Association; 1994.

Near TJ, Dornburg A, Eytan RI, Keck BP, Smith WL, Kuhn KL, Moore JA, Price SA, Burbrink FT, Friedman M, Wainwright PC. Phylogeny and tempo of diversification in the superradiation of spiny-raying fishes. PNAS. 2013;109:13698–13703. doi: 10.1073/pnas.1206625109. PubMed DOI PMC

Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;63:289–290. doi: 10.1093/bioinformatics/btg412. PubMed DOI

R Core Team . R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017.

Pybus OG, Harvey PH. Testing macro-evolutionary models using incomplete molecular phylogenies. Proc R Soc B. 2000;267:2267–2272. doi: 10.1098/rspb.2000.1278. PubMed DOI PMC

Pybus OG, Rambaut A, Holmes EC, Harvey PH. New inferences from tree shape: numbers of missing taxa and population growth rates. Syst Biol. 2002;51:881–888. doi: 10.1080/10635150290102582. PubMed DOI

Rabosky DL. LASER: a maximum likelihood toolkit for detecting temporal shifts in diversification rates from molecular phylogenies. Evol Bioinforma. 2006;2:247–250. doi: 10.1177/117693430600200024. PubMed DOI PMC

Cusimano N, Renner SS. Slowdowns in diversification rates from real phylogenies may not be real. Syst Biol. 2010;59:458–464. doi: 10.1093/sysbio/syq032. PubMed DOI

Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;19:716–723. doi: 10.1109/TAC.1974.1100705. DOI

Burnham KP, Anderson DR. Model Selection and Multimodel inference: a practical information-theoretic approach. New York: Springer; 2002.

Etienne RS, Pigot AL, Phillimore AB. How reliably can we infer diversity-dependent diversification from phylogenies? Methods Ecol Evol. 2016;7:1092–1099. doi: 10.1111/2041-210X.12565. DOI

Rabosky DL. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS One. 2014;9:e89543. doi: 10.1371/journal.pone.0089543. PubMed DOI PMC

Rabosky DL, Grundler M, Anderson C, Title P, Shi JJ, Brown JW, Huang H, Larson JG. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol Evol. 2014;5:701–707. doi: 10.1111/2041-210X.12199. DOI

FitzJohn RG, Maddison WP, Otto SP. Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies. Syst Biol. 2009;58:595–611. doi: 10.1093/sysbio/syp067. PubMed DOI

Plummer M, Best N, Cowles K, Vines K. CODA: convergence diagnosis and output analysis for MCMC. R News. 2006;6:7–11.

Shi JJ, Rabosky DL. Speciation dynamics during the global radiation of extant bats. Evolution. 2015;69:1528–1545. doi: 10.1111/evo.12681. PubMed DOI

Kass RE, Raftery AE. Bayes factors. J Am Stat Assoc. 1995;90:773–795. doi: 10.1080/01621459.1995.10476572. DOI

Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W. GEIGER: investigating evolutionary radiation. Bioinformatics. 2008;24:129–131. doi: 10.1093/bioinformatics/btm538. PubMed DOI

Pennell MW, Eastman JM, Slater GJ, Brown JW, Uyeda JC, FitzJohn RG, Alfaro ME, Harmon LJ. Geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics. 2014;30:2216–2218. doi: 10.1093/bioinformatics/btu181. PubMed DOI

Felsenstein J. Phylogenies and the Comparative method. Am Nat. 1985;125:1–15. doi: 10.1086/284325. DOI

Murrell DJ. A global envelope test to detect non-random bursts of trait evolution. Methods Ecol Evol. 2018;9:1739–1748. doi: 10.1111/2041-210X.13006. DOI

Slater GJ, Price SA, Santini F, Alfaro ME. Diversity versus disparity and the radiation of modern cetaceans. Proc R Soc B. 2010;277:3097–3104. doi: 10.1098/rspb.2010.0408. PubMed DOI PMC

Revell LJ. Two new graphical methods for mapping trait evolution on phylogenies. Methods Ecol Evol. 2013;4:754–759. doi: 10.1111/2041-210X.12066. DOI

Revell LJ. Phytools: an R package for phylogenetic comparative biology (and other things) Methods Ecol Evol. 2012;3:217–223. doi: 10.1111/j.2041-210X.2011.00169.x. DOI

Hansen TF. Stabilizing Selection and the Comparative analysis of adaptation. Evolution. 1997;51:1341–1351. doi: 10.1111/j.1558-5646.1997.tb01457.x. PubMed DOI

Butler MA, King AA. Phylogenetic Comparative analysis: a modeling approach for adaptive evolution. Am Nat. 2004;164:683–695. doi: 10.1086/426002. PubMed DOI

Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999;401:877–884. doi: 10.1038/44766. PubMed DOI

Gould SJ, Eldredge N. Punctuated equilibrium comes of age. Nature. 1993;366:223–227. doi: 10.1038/366223a0. PubMed DOI

Ingram T, Mahler DL. SURFACE: detecting convergent evolution from comparative data by fitting Ornstein-Uhlenbeck models with stepwise Akaike information criterion. Methods Ecol Evol. 2013;4:416–425. doi: 10.1111/2041-210X.12034. DOI

Khabbazian M, Kriebel R, Rohe K, Ané C. Fast and accurate detection of evolutionary shifts in Ornstein-Uhlenbeck models. Methods Ecol Evol. 2016;7:811–824. doi: 10.1111/2041-210X.12534. DOI

Ho LST, Ané C. Intrinsic inference difficulties for trait evolution with Ornstein-Uhlenbeck models. Methods Ecol Evol. 2014;5:1133–1146. doi: 10.1111/2041-210X.12285. DOI

Harvey MG, Rabosky DL. Continuous traits and speciation rates: alternatives to state-dependent diversification models. Methods Ecol Evol. 2017;9:984–993. doi: 10.1111/2041-210X.12949. DOI

FitzJohn RG. Quantitative traits and diversification. Syst Biol. 2010;59:619–633. doi: 10.1093/sysbio/syq053. PubMed DOI

Maddison WP, Midford PE, Otto SP. Estimating a binary character’s effect on speciation an extinction. Syst Biol. 2007;56:701–710. doi: 10.1080/10635150701607033. PubMed DOI

FitzJohn RG. Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol Evol. 2012;3:1084–1092. doi: 10.1111/j.2041-210X.2012.00234.x. DOI

Goldberg EE, Lancaster LT, Ree RH. Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Syst Biol. 2011;60:451–465. doi: 10.1093/sysbio/syr046. PubMed DOI

Beaulieu JM, O’Meara BC. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst Biol. 2016;65:583–601. doi: 10.1093/sysbio/syw022. PubMed DOI

Caetano DS, O’Meara BC, Beaulieu JM. In press hidden state models improve state-dependent diversification approaches, including biogeographic models. Evolution. 10.1101/evo.13602. PubMed

Kodandaramaiah U, Murali G. What affects power to estimate speciation rate shifts? PeerJ. 2018;6:e5495. doi: 10.7717/peerj.5495. PubMed DOI PMC

Moore BR, Höhna S, May MR, Rannala B, Huelsenbeck JP. Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. PNAS. 2016;113:9569–9574. doi: 10.1073/pnas.1518659113. PubMed DOI PMC

Rabosky DL, Mitchell JS, Chang J. Is BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification models. Syst Biol. 2017;66:477–498. doi: 10.1093/sysbio/syx037. PubMed DOI PMC

Kisel Y, Barraclough TG. Speciation has a spatial scale that depends on levels of gene flow. Am Nat. 2010;175:316–334. doi: 10.1086/650369. PubMed DOI

Seehausen O, Wagner CE. Speciation in freshwater fishes. Annu Rev Ecol Evol Syst. 2014;45:621–651. doi: 10.1146/annurev-ecolsys-120213-091818. DOI

Ivory SJ, Blome MW, King JW, McGlue MM, Cole JE, Cohen AS. Environmental change explains cichlid adaptive radiation at Lake Malawi over the past 1.2 million years. PNAS. 2016;113:11895–11900. doi: 10.1073/pnas.1611028113. PubMed DOI PMC

Murphy WJ, Collier GE. A molecular phylogeny for aplocheiloid fishes (Atherinomorpha, Cyprinodontiformes): the role of vicariance and the origins of annualism. Mol Biol Evol. 1997;14:790–799. doi: 10.1093/oxfordjournals.molbev.a025819. PubMed DOI

deMenocal PB. African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Plant Sci Lett. 2004;220:3–24. doi: 10.1016/S0012-821X(04)00003-2. DOI

Trauth MH, Maslin MA, Deino A, Strecker MR. Late Cenozoic moisture history of East Africa. Science. 2005;309:2051–2053. doi: 10.1126/science.1112964. PubMed DOI

Trauth MH, Larrasoaña JC, Mudelsee M. Trends, rhythms and events in Plio-Pleistocene African climate. Quat Sci Rev. 2009;28:399–411. doi: 10.1016/j.quascirev.2008.11.003. DOI

Helmstetter AJ, Papadopulos AST, Igea J, Van Dooren TJM, Leroi AM, Savolainen V. Viviparity stimulations diversification in an order of fish. Nat Commun. 2016;7:11271. doi: 10.1038/ncomms11271. PubMed DOI PMC

Furness AI, Reznick DN, Springer MS, Meredith RW. Convergent evolution of alternative developmental trajectories associated with diapause in African and South American killifish. 2015;282:20142189. PubMed PMC

Krysanov E, Demidova T, Nagy B. Divergent karyotypes of the annual killifish genus Nothobranchius (Cyprinodontiformes, Nothobranchiidae) Comp Cytogenet. 2016;10:439–445. doi: 10.3897/CompCytogen.v10i3.9863. PubMed DOI PMC

Polačik M, Reichard M. Diet overlap among three sympatric African annual killifish species (Nothobranchius spp.) from Mozambique. J Fish Biol 2010;77:754–768. PubMed

Polačik M, Harrod C, Blažek R, Reichard M. Trophic niche partitioning in communities of African annual fish: evidence from stable isotopes. Hydrobiologia. 2014;721:99–106. doi: 10.1007/s10750-013-1652-0. DOI

Cellerino A, Valenzano DR, Reichard M. From the bush to the bench: the annual Nothobranchius fishes as a new model system in biology. Biol Rev. 2016;91:511–533. doi: 10.1111/brv.12183. PubMed DOI

Cooper N, Thomas GH, Venditti C, Meade A, Freckleton RP. A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies. Biol J Linn Soc. 2016;118:64–77. doi: 10.1111/bij.12701. PubMed DOI PMC

Mahler DL, Weber MG, Wagner CE, Ingram T. Pattern and process in the Comparative study of convergent evolution. Am Nat. 2017;190:S13–S28. doi: 10.1086/692648. PubMed DOI

Costa WJEM. Parallel evolution in ichthyophagous annual killifishes of South America and Africa. Cybium. 2011;35:39–46.

García G, Wlasiuk G, Lessa EP. High levels of mitochondrial cytochrome b divergence and phylogenetic relationships in the annual killifishes of the genus Cynolebias (Cyprinodontifomes, Rivulidae) Zool J Linnean Soc. 2000;129:93–110. doi: 10.1111/j.1096-3642.2000.tb00010.x. DOI

Van Dooren TJM, Thomassen HA, Smit F, Helmstetter AJ, Savolainen V. A case for sympatric speciation by cannibalism in South-American annual killifish (Austrolebias). 2018; doi: https//doi.org.10.1101.121806.

Furness AI. The evolution of an annual life cycle in killifish: adaptation to ephemeral aquatic environments through embryonic diapause. Biol Rev. 2015;91:796–812. doi: 10.1111/brv.12194. PubMed DOI

Kalala AM, Msanya BM, Amuri NA, Semoka JM. Pedological characterization of some typical alluvial soils of Kilombero District, Tanzania. Am J Agric For. 2017;5(1):11.

Huang D, Goldberg EE, Chou LM, Roy K. The origin and evolution of coral species richness in a marine biodiversity hotspot. Evolution. 2018;72:288–302. doi: 10.1111/evo.13402. PubMed DOI

Sepulchre P, Ramstein G, Fluteau F, Schuster M, Tiercelin JJ, Brunet M. Tectonic uplift and East Africa Aridification. Science. 2006;313:1419–1423. doi: 10.1126/science.1129158. PubMed DOI

Davis MP, Midford PE, Maddison W. Exploring power and parameter estimation of the BiSSE method for analysing species diversification. BMC Evol Biol. 2013;13:38. doi: 10.1186/1471-2148-13-38. PubMed DOI PMC

Maddison WP, FitzJohn RG. The unsolved challenge to phylogenetic correlation tests for categorical characters. Syst Biol. 2015;64:127–136. doi: 10.1093/sysbio/syu070. PubMed DOI

Rabosky DL, Goldberg EE. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst Biol. 2015;64:340–355. doi: 10.1093/sysbio/syu131. PubMed DOI

Feldman A, Sabath N, Pyron RA, Mayrose I, Meiri S. Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Glob Ecol Biogeogr. 2016;25:187–197. doi: 10.1111/geb.12398. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Patterns and drivers of Nothobranchius killifish diversity in lowland Tanzania

. 2022 Jul ; 12 (6) : e8990. [epub] 20220614

Genetic diversity of a widespread annual killifish from coastal Tanzania

. 2020 Jan 06 ; 20 (1) : 1. [epub] 20200106

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace