Most cited article - PubMed ID 31349380
Transcription of specific auxin efflux and influx carriers drives auxin homeostasis in tobacco cells
Auxin, indole-3-acetic acid (IAA), is a key phytohormone with diverse morphogenic roles in land plants, but its function and transport mechanisms in algae remain poorly understood. We therefore aimed to explore the role of IAA in a complex, streptophyte algae Chara braunii. Here, we described novel responses of C. braunii to IAA and characterized two homologs of PIN auxin efflux carriers: CbPINa and CbPINc. We determined their localization in C. braunii using epitope-specific antibodies and tested their function in heterologous land plant models. Further, using phosphoproteomic analysis, we identified IAA-induced phosphorylation events. The thallus regeneration assay showed that IAA promotes thallus elongation and side branch development. Immunolocalization of CbPINa and CbPINc confirmed their presence on the plasma membrane of vegetative and generative cells of C. braunii. However, functional assays in tobacco BY-2 cells demonstrated that CbPINa affects auxin transport, whereas CbPINc does not. The IAA is effective in the acceleration of cytoplasmic streaming and the phosphorylation of evolutionary conserved targets such as homolog of RAF-like kinase. These findings suggest that, although canonical PIN-mediated auxin transport mechanisms might not be fully conserved in Chara, IAA is involved in morphogenesis and fast signaling processes.
- Keywords
- Chara, auxin transport, indole‐3‐acetic acid, plant evolution, streptophytes,
- MeSH
- Biological Transport drug effects MeSH
- Cell Membrane metabolism drug effects MeSH
- Chara * metabolism drug effects MeSH
- Phosphorylation drug effects MeSH
- Indoleacetic Acids * metabolism pharmacology MeSH
- Membrane Transport Proteins * metabolism MeSH
- Plant Proteins * metabolism MeSH
- Nicotiana metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- indoleacetic acid MeSH Browser
- Indoleacetic Acids * MeSH
- Membrane Transport Proteins * MeSH
- Plant Proteins * MeSH
Fluorescence light microscopy provided convincing evidence for the domain organization of plant plasma membrane (PM) proteins. Both peripheral and integral PM proteins show an inhomogeneous distribution within the PM. However, the size of PM nanodomains and protein clusters is too small to accurately determine their dimensions and nano-organization using routine confocal fluorescence microscopy and super-resolution methods. To overcome this limitation, we have developed a novel correlative light electron microscopy method (CLEM) using total internal reflection fluorescence microscopy (TIRFM) and advanced environmental scanning electron microscopy (A-ESEM). Using this technique, we determined the number of auxin efflux carriers from the PINFORMED (PIN) family (NtPIN3b-GFP) within PM nanodomains of tobacco cell PM ghosts. Protoplasts were attached to coverslips and immunostained with anti-GFP primary antibody and secondary antibody conjugated to fluorochrome and gold nanoparticles. After imaging the nanodomains within the PM with TIRFM, the samples were imaged with A-ESEM without further processing, and quantification of the average number of molecules within the nanodomain was performed. Without requiring any post-fixation and coating procedures, this method allows to study details of the organization of auxin carriers and other plant PM proteins.
- Keywords
- auxin carriers, correlative microscopy, nanodomains, plasma membrane,
- MeSH
- Arabidopsis genetics growth & development MeSH
- Cell Membrane genetics metabolism ultrastructure MeSH
- Microscopy, Confocal MeSH
- Metal Nanoparticles chemistry MeSH
- Indoleacetic Acids metabolism MeSH
- Microscopy, Electron, Scanning * MeSH
- Image Processing, Computer-Assisted MeSH
- Protoplasts metabolism ultrastructure MeSH
- Plant Growth Regulators genetics metabolism MeSH
- Nicotiana genetics metabolism ultrastructure MeSH
- Gold chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Indoleacetic Acids MeSH
- Plant Growth Regulators MeSH
- Gold MeSH
Together with auxin transport, auxin metabolism is a key determinant of auxin signaling output by plant cells. Enzymatic machinery involved in auxin metabolism is subject to regulation based on numerous inputs, including the concentration of auxin itself. Therefore, experiments characterizing altered auxin availability and subsequent changes in auxin metabolism could elucidate the function and regulatory role of individual elements in the auxin metabolic machinery. Here, we studied auxin metabolism in auxin-dependent tobacco BY-2 cells. We revealed that the concentration of N-(2-oxindole-3-acetyl)-l-aspartic acid (oxIAA-Asp), the most abundant auxin metabolite produced in the control culture, dramatically decreased in auxin-starved BY-2 cells. Analysis of the transcriptome and proteome in auxin-starved cells uncovered significant downregulation of all tobacco (Nicotiana tabacum) homologs of Arabidopsis (Arabidopsis thaliana) DIOXYGENASE FOR AUXIN OXIDATION 1 (DAO1), at both transcript and protein levels. Auxin metabolism profiling in BY-2 mutants carrying either siRNA-silenced or CRISPR-Cas9-mutated NtDAO1, as well as in dao1-1 Arabidopsis plants, showed not only the expected lower levels of oxIAA, but also significantly lower abundance of oxIAA-Asp. Finally, ability of DAO1 to oxidize IAA-Asp was confirmed by an enzyme assay in AtDAO1-producing bacterial culture. Our results thus represent direct evidence of DAO1 activity on IAA amino acid conjugates.
- MeSH
- Amino Acids metabolism MeSH
- Dioxygenases metabolism MeSH
- Oxidation-Reduction MeSH
- Plant Proteins metabolism MeSH
- Nicotiana enzymology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Amino Acids MeSH
- Dioxygenases MeSH
- Plant Proteins MeSH