Nejvíce citovaný článek - PubMed ID 16192309
Auxin, indole-3-acetic acid (IAA), is a key phytohormone with diverse morphogenic roles in land plants, but its function and transport mechanisms in algae remain poorly understood. We therefore aimed to explore the role of IAA in a complex, streptophyte algae Chara braunii. Here, we described novel responses of C. braunii to IAA and characterized two homologs of PIN auxin efflux carriers: CbPINa and CbPINc. We determined their localization in C. braunii using epitope-specific antibodies and tested their function in heterologous land plant models. Further, using phosphoproteomic analysis, we identified IAA-induced phosphorylation events. The thallus regeneration assay showed that IAA promotes thallus elongation and side branch development. Immunolocalization of CbPINa and CbPINc confirmed their presence on the plasma membrane of vegetative and generative cells of C. braunii. However, functional assays in tobacco BY-2 cells demonstrated that CbPINa affects auxin transport, whereas CbPINc does not. The IAA is effective in the acceleration of cytoplasmic streaming and the phosphorylation of evolutionary conserved targets such as homolog of RAF-like kinase. These findings suggest that, although canonical PIN-mediated auxin transport mechanisms might not be fully conserved in Chara, IAA is involved in morphogenesis and fast signaling processes.
- Klíčová slova
- Chara, auxin transport, indole‐3‐acetic acid, plant evolution, streptophytes,
- MeSH
- biologický transport účinky léků MeSH
- buněčná membrána metabolismus účinky léků MeSH
- Chara * metabolismus účinky léků MeSH
- fosforylace účinky léků MeSH
- kyseliny indoloctové * metabolismus farmakologie MeSH
- membránové transportní proteiny * metabolismus MeSH
- rostlinné proteiny * metabolismus MeSH
- tabák metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- indoleacetic acid MeSH Prohlížeč
- kyseliny indoloctové * MeSH
- membránové transportní proteiny * MeSH
- rostlinné proteiny * MeSH
Apple species are the unique naturally rich source of dihydrochalcones, phenolic compounds with an elusive role in planta, but suggested auto-allelochemical features related to "apple replant disease" (ARD). Our aim was to elucidate the physiological basis of the phytotoxic action of dihydrochalcone phloretin in the model plant Arabidopsis and to promote phloretin as a new prospective eco-friendly phytotoxic compound. Phloretin treatment induced a significant dose-dependent growth retardation and severe morphological abnormalities and agravitropic behavior in Arabidopsis seedlings. Histological examination revealed a reduced starch content in the columella cells and a serious disturbance in root architecture, which resulted in the reduction in length of meristematic and elongation zones. Significantly disturbed auxin metabolome profile in roots with a particularly increased content of IAA accumulated in the lateral parts of the root apex, accompanied by changes in the expression of auxin biosynthetic and transport genes, especially PIN1, PIN3, PIN7, and ABCB1, indicates the role of auxin in physiological basis of phloretin-induced growth retardation. The results reveal a disturbance of auxin homeostasis as the main mechanism of phytotoxic action of phloretin. This mechanism makes phloretin a prospective candidate for an eco-friendly bioherbicide and paves the way for further research of phloretin role in ARD.
- Klíčová slova
- ARD, Malus × domestica Borkh. (apple), allelopathy, auxin, dihydrochalcones, phloretin, phytotoxicity, polar auxin transport,
- Publikační typ
- časopisecké články MeSH
Salt and osmotic stress are the main abiotic stress factors affecting plant root growth and architecture. We investigated the effect of salt (100 mM NaCl) and osmotic (200 mM mannitol) stress on the auxin metabolome by UHPLC-MS/MS, auxin distribution by confocal microscopy, and transcript levels of selected genes by qRT-PCR in Arabidopsis thaliana ecotype Columbia-0 (Col-0) and DR5rev::GFP (DR5) line. During long-term stress (13 days), a stability of the auxin metabolome and a tendency to increase indole-3-acetic acid (IAA) were observed, especially during salt stress. Short-term stress (3 h) caused significant changes in the auxin metabolome, especially NaCl treatment resulted in a significant reduction of IAA. The data derived from auxin profiling were consistent with gene expressions showing the most striking changes in the transcripts of YUC, GH3, and UGT transcripts, suggesting disruption of auxin biosynthesis, but especially in the processes of amide and ester conjugation. These data were consistent with the auxin distribution observed in the DR5 line. Moreover, NaCl treatment caused a redistribution of auxin signals from the quiescent center and the inner layers of the root cap to the epidermal and cortical cells of the root elongation zone. The distribution of PIN proteins was also disrupted by salt stress; in particular, PIN2 was suppressed, even after 5 min of treatment. Based on our results, the DR5 line was more sensitive to the applied stresses than Col-0, although both lines showed similar trends in root morphology, as well as transcriptome and metabolome parameters under stress conditions.
- Klíčová slova
- Arabidopsis thaliana, abiotic stress, auxin distribution, auxin metabolome, auxin transcriptome, root growth,
- MeSH
- Arabidopsis růst a vývoj MeSH
- chlorid sodný farmakologie MeSH
- kořeny rostlin růst a vývoj MeSH
- kyseliny indoloctové metabolismus MeSH
- proteiny huseníčku biosyntéza MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- solný stres účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorid sodný MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku MeSH
Polar subcellular localization of the PIN exporters of the phytohormone auxin is a key determinant of directional, intercellular auxin transport and thus a central topic of both plant cell and developmental biology. Arabidopsis mutants lacking PID, a kinase that phosphorylates PINs, or the MAB4/MEL proteins of unknown molecular function display PIN polarity defects and phenocopy pin mutants, but mechanistic insights into how these factors convey PIN polarity are missing. Here, by combining protein biochemistry with quantitative live-cell imaging, we demonstrate that PINs, MAB4/MELs, and AGC kinases interact in the same complex at the plasma membrane. MAB4/MELs are recruited to the plasma membrane by the PINs and in concert with the AGC kinases maintain PIN polarity through limiting lateral diffusion-based escape of PINs from the polar domain. The PIN-MAB4/MEL-PID protein complex has self-reinforcing properties thanks to positive feedback between AGC kinase-mediated PIN phosphorylation and MAB4/MEL recruitment. We thus uncover the molecular mechanism by which AGC kinases and MAB4/MEL proteins regulate PIN localization and plant development.
- Klíčová slova
- Arabidopsis, cell polarity, lateral diffusion, plant development, polar auxin transport, positive feedback, protein phosphorylation,
- MeSH
- Arabidopsis * genetika metabolismus MeSH
- biologický transport MeSH
- kořeny rostlin metabolismus MeSH
- kyseliny indoloctové MeSH
- membránové transportní proteiny genetika MeSH
- polarita buněk MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné buňky metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- membránové transportní proteiny MeSH
- proteiny huseníčku * MeSH
Eukaryotic cells rely on the accuracy and efficiency of vesicular traffic. In plants, disturbances in vesicular trafficking are well studied in quickly dividing root meristem cells or polar growing root hairs and pollen tubes. The development of the female gametophyte, a unique haploid reproductive structure located in the ovule, has received far less attention in studies of vesicular transport. Key molecules providing the specificity of vesicle formation and its subsequent recognition and fusion with the acceptor membrane are Rab proteins. Rabs are anchored to membranes by covalently linked geranylgeranyl group(s) that are added by the Rab geranylgeranyl transferase (RGT) enzyme. Here we show that Arabidopsis plants carrying mutations in the gene encoding the β-subunit of RGT (rgtb1) exhibit severely disrupted female gametogenesis and this effect is of sporophytic origin. Mutations in rgtb1 lead to internalization of the PIN1 and PIN3 proteins from the basal membranes to vesicles in provascular cells of the funiculus. Decreased transport of auxin out of the ovule is accompanied by auxin accumulation in tissue surrounding the growing gametophyte. In addition, female gametophyte development arrests at the uni- or binuclear stage in a significant portion of the rgtb1 ovules. These observations suggest that communication between the sporophyte and the developing female gametophyte relies on Rab-dependent vesicular traffic of the PIN1 and PIN3 transporters and auxin efflux out of the ovule.
- Klíčová slova
- Arabidopsis, PIN1, PIN3, Rab, auxin transport, female gametophyte, funiculus, ovule, rab geranylgeranyl transferase,
- MeSH
- Arabidopsis * genetika MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku * genetika MeSH
- pylová láčka MeSH
- vajíčko rostlin genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- proteiny huseníčku * MeSH
Plant growth and productivity are orchestrated by a network of signaling cascades involved in balancing responses to perceived environmental changes with resource availability. Vascular plants are divided into the shoot, an aboveground organ where sugar is synthesized, and the underground located root. Continuous growth requires the generation of energy in the form of carbohydrates in the leaves upon photosynthesis and uptake of nutrients and water through root hairs. Root hair outgrowth depends on the overall condition of the plant and its energy level must be high enough to maintain root growth. TARGET OF RAPAMYCIN (TOR)-mediated signaling cascades serve as a hub to evaluate which resources are needed to respond to external stimuli and which are available to maintain proper plant adaptation. Root hair growth further requires appropriate distribution of the phytohormone auxin, which primes root hair cell fate and triggers root hair elongation. Auxin is transported in an active, directed manner by a plasma membrane located carrier. The auxin efflux carrier PIN-FORMED 2 is necessary to transport auxin to root hair cells, followed by subcellular rearrangements involved in root hair outgrowth. This review presents an overview of events upstream and downstream of PIN2 action, which are involved in root hair growth control.
- Klíčová slova
- PIN-FORMED 2, ROP2, ROS, TOR signaling, auxin, plant adaptation, polar cell elongation, root growth, root hair growth,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Plant roots are very plastic and can adjust their tissue organization and cell appearance during abiotic stress responses. Previous studies showed that direct root illumination and sugar supplementation mask root growth phenotypes and traits. Sugar and light signaling where further connected to changes in auxin biosynthesis and distribution along the root. Auxin signaling underpins almost all processes involved in the establishment of root traits, including total root length, gravitropic growth, root hair initiation and elongation. Root hair plasticity allows maximized nutrient uptake and therefore plant productivity, and root hair priming and elongation require proper auxin availability. In the presence of sucrose in the growth medium, root hair emergence is partially rescued, but the full potential of root hair elongation is lost. With our work we describe a combinatory study showing to which extent light and sucrose are antagonistically influencing root length, but additively affecting root hair emergence and elongation. Furthermore, we investigated the impact of the loss of PIN-FORMED2, an auxin efflux carrier mediating shootward auxin transporter, on the establishment of root traits in combination with all growth conditions.
- Klíčová slova
- PIN-FORMED2, dark grown roots, gravitropic index, light grown roots, root growth, root hair, root hair elongation, shootward auxin transport, sucrose, sugar, total root length,
- Publikační typ
- časopisecké články MeSH
Spontaneously arising channels that transport the phytohormone auxin provide positional cues for self-organizing aspects of plant development such as flexible vasculature regeneration or its patterning during leaf venation. The auxin canalization hypothesis proposes a feedback between auxin signaling and transport as the underlying mechanism, but molecular players await discovery. We identified part of the machinery that routes auxin transport. The auxin-regulated receptor CAMEL (Canalization-related Auxin-regulated Malectin-type RLK) together with CANAR (Canalization-related Receptor-like kinase) interact with and phosphorylate PIN auxin transporters. camel and canar mutants are impaired in PIN1 subcellular trafficking and auxin-mediated PIN polarization, which macroscopically manifests as defects in leaf venation and vasculature regeneration after wounding. The CAMEL-CANAR receptor complex is part of the auxin feedback that coordinates polarization of individual cells during auxin canalization.
- MeSH
- Arabidopsis enzymologie genetika MeSH
- biologický transport MeSH
- kyseliny indoloctové metabolismus MeSH
- mapování interakce mezi proteiny MeSH
- membránové transportní proteiny metabolismus MeSH
- proteinkinasy genetika metabolismus MeSH
- proteiny huseníčku metabolismus MeSH
- transkripční faktory metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- membránové transportní proteiny MeSH
- PIN1 protein, Arabidopsis MeSH Prohlížeč
- proteinkinasy MeSH
- proteiny huseníčku MeSH
- transkripční faktory MeSH
- WRKY23 protein, Arabidopsis MeSH Prohlížeč
Rapid progress in plant molecular biology in recent years has uncovered the main players in hormonal pathways and characterized transcriptomic networks associated with hormonal response. However, the role of RNA processing, in particular alternative splicing (AS), remains largely unexplored. Here, using example genes involved in cytokinin signaling, brassinosteroid synthesis and auxin transport, we present a set of reporters devised to visualize their AS events in vivo. These reporters show a differential tissue-specific expression of certain transcripts and reveal that expression of some of the them can be changed by the application of the exogenous hormone. Finally, based on the characterized AS event of the PIN7 auxin efflux carrier, we designed a system that allows a rapid genetic screening for the factors upstream of this AS event. Our innovative toolset can be therefore highly useful for exploring novel regulatory nodes of hormonal pathways and potentially helpful for plant researchers focusing on developmental aspects of AS.
- Klíčová slova
- AHP6, Arabidopsis, D-amino acid oxidase, DWF4, PIN7, alternative splicing, auxin, brassinosteroids, cytokinins, genetic screen,
- Publikační typ
- časopisecké články MeSH
Plant survival depends on vascular tissues, which originate in a self-organizing manner as strands of cells co-directionally transporting the plant hormone auxin. The latter phenomenon (also known as auxin canalization) is classically hypothesized to be regulated by auxin itself via the effect of this hormone on the polarity of its own intercellular transport. Correlative observations supported this concept, but molecular insights remain limited. In the current study, we established an experimental system based on the model Arabidopsis thaliana, which exhibits auxin transport channels and formation of vasculature strands in response to local auxin application. Our methodology permits the genetic analysis of auxin canalization under controllable experimental conditions. By utilizing this opportunity, we confirmed the dependence of auxin canalization on a PIN-dependent auxin transport and nuclear, TIR1/AFB-mediated auxin signaling. We also show that leaf venation and auxin-mediated PIN repolarization in the root require TIR1/AFB signaling. Further studies based on this experimental system are likely to yield better understanding of the mechanisms underlying auxin transport polarization in other developmental contexts.
- Klíčová slova
- Arabidopsis thaliana, PIN1, TIR1/AFB, auxin, auxin canalization, cell polarity,
- MeSH
- Arabidopsis * genetika metabolismus MeSH
- F-box proteiny * genetika MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- receptory buněčného povrchu genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- F-box proteiny * MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku * MeSH
- receptory buněčného povrchu MeSH
- regulátory růstu rostlin MeSH
- TIR1 protein, Arabidopsis MeSH Prohlížeč