Nejvíce citovaný článek - PubMed ID 31381608
Convergent evolution in the mechanisms of ACBD3 recruitment to picornavirus replication sites
The nucleocapsid protein of the SARS-CoV-2 virus comprises two RNA-binding domains and three regions that are intrinsically disordered. While the structures of the RNA-binding domains have been solved using protein crystallography and NMR, current knowledge of the conformations of the full-length nucleocapsid protein is rather limited. To fill in this knowledge gap, we combined coarse-grained molecular simulations with data from small-angle X-ray scattering (SAXS) experiments using the ensemble refinement of SAXS (EROS) method. Our results show that the dimer of the full-length nucleocapsid protein exhibits large conformational fluctuations with its radius of gyration ranging from about 4 to 8 nm. The RNA-binding domains do not make direct contacts. The disordered region that links these two domains comprises a hydrophobic α-helix which makes frequent and nonspecific contacts with the RNA-binding domains. Each of the intrinsically disordered regions adopts conformations that are locally compact, yet on average, much more extended than Gaussian chains of equivalent lengths. We offer a detailed picture of the conformational ensemble of the nucleocapsid protein dimer under near-physiological conditions, which will be important for understanding the nucleocapsid assembly process.
- Klíčová slova
- EROS, Nucleocapsid, SARS-CoV-2, SAXS,
- MeSH
- COVID-19 * MeSH
- difrakce rentgenového záření MeSH
- konformace proteinů MeSH
- lidé MeSH
- maloúhlový rozptyl MeSH
- nukleokapsida - proteiny chemie MeSH
- nukleokapsida MeSH
- SARS-CoV-2 * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nukleokapsida - proteiny MeSH
The Czech Republic, a part of the former Czechoslovakia, has been at the forefront of several research directions in virology, genetics and physiology [...].
- MeSH
- virologie * MeSH
- Publikační typ
- práce podpořená grantem MeSH
- úvodníky MeSH
- Geografické názvy
- Česká republika MeSH
Viral proteases are indispensable for successful virion maturation, thus making them a prominent drug target. Their enzyme activity is tightly spatiotemporally regulated by expression in the precursor form with little or no activity, followed by activation via autoprocessing. These cleavage events are frequently triggered upon transportation to a specific compartment inside the host cell. Typically, precursor oligomerization or the presence of a co-factor is needed for activation. A detailed understanding of these mechanisms will allow ligands with non-canonical mechanisms of action to be designed, which would specifically modulate the initial irreversible steps of viral protease autoactivation. Binding sites exclusive to the precursor, including binding sites beyond the protease domain, can be exploited. Both inhibition and up-regulation of the proteolytic activity of viral proteases can be detrimental for the virus. All these possibilities are discussed using examples of medically relevant viruses including herpesviruses, adenoviruses, retroviruses, picornaviruses, caliciviruses, togaviruses, flaviviruses, and coronaviruses.
- Klíčová slova
- Human Immunodeficiency Virus (HIV), Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), activation, adenoviruses, autoprocessing, flaviviruses, herpesviruses, precursor, protease,
- MeSH
- antivirové látky farmakologie MeSH
- Flavivirus účinky léků metabolismus MeSH
- Herpesviridae účinky léků metabolismus MeSH
- HIV-1 účinky léků MeSH
- inhibitory virových proteáz farmakologie MeSH
- lidé MeSH
- lidské adenoviry účinky léků metabolismus MeSH
- SARS-CoV-2 účinky léků metabolismus MeSH
- virové nemoci farmakoterapie MeSH
- virové proteasy biosyntéza metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antivirové látky MeSH
- inhibitory virových proteáz MeSH
- virové proteasy MeSH
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease-19 pandemic. One of the key components of the coronavirus replication complex are the RNA methyltransferases (MTases), RNA-modifying enzymes crucial for RNA cap formation. Recently, the structure of the 2'-O MTase has become available; however, its biological characterization within the infected cells remains largely elusive. Here, we report a novel monoclonal antibody directed against the SARS-CoV-2 non-structural protein nsp10, a subunit of both the 2'-O RNA and N7 MTase protein complexes. Using this antibody, we investigated the subcellular localization of the SARS-CoV-2 MTases in cells infected with the SARS-CoV-2.
- Klíčová slova
- SARS-CoV-2, capping enzyme, coronavirus, methyltransferase, nsp10, nsp14, nsp16,
- MeSH
- COVID-19 virologie MeSH
- lidé MeSH
- methyltransferasy analýza genetika metabolismus MeSH
- monoklonální protilátky analýza MeSH
- RNA čepičky genetika metabolismus MeSH
- RNA virová genetika metabolismus MeSH
- SARS-CoV-2 chemie enzymologie genetika MeSH
- transport proteinů MeSH
- virové nestrukturální proteiny analýza genetika metabolismus MeSH
- virové regulační a přídatné proteiny analýza genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- methyltransferasy MeSH
- monoklonální protilátky MeSH
- NSP10 protein, SARS-CoV-2 MeSH Prohlížeč
- NSP16 protein, SARS-CoV-2 MeSH Prohlížeč
- RNA čepičky MeSH
- RNA virová MeSH
- virové nestrukturální proteiny MeSH
- virové regulační a přídatné proteiny MeSH
Many picornaviruses hijack the Golgi resident Acyl-coenzyme A binding domain containing 3 (ACBD3) protein in order to recruit the phosphatidylinositol 4-kinase B (PI4KB) to viral replication organelles (ROs). PI4KB, once recruited and activated by ACBD3 protein, produces the lipid phosphatidylinositol 4-phosphate (PI4P), which is a key step in the biogenesis of viral ROs. To do so, picornaviruses use their small nonstructural protein 3A that binds the Golgi dynamics domain of the ACBD3 protein. Here, we present the analysis of the highly flexible ACBD3 proteins and the viral 3A protein in solution using small-angle X-ray scattering and computer simulations. Our analysis revealed that both the ACBD3 protein and the 3A:ACBD3 protein complex have an extended and flexible conformation in solution.
- Klíčová slova
- ACBD3, RNA virus, coarse-grained simulations, host factor, intrinsically disordered regions, picornavirus, small-angle X-ray scattering (SAXS),
- MeSH
- acylkoenzym A chemie metabolismus MeSH
- adaptorové proteiny signální transdukční chemie metabolismus MeSH
- lidé MeSH
- membránové proteiny chemie metabolismus MeSH
- Picornaviridae chemie metabolismus MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ACBD3 protein, human MeSH Prohlížeč
- acylkoenzym A MeSH
- adaptorové proteiny signální transdukční MeSH
- membránové proteiny MeSH