Most cited article - PubMed ID 31407305
Stable Isotope Probing Techniques and Methodological Considerations Using 15N
Millipedes are thought to depend on their gut microbiome for processing plant-litter-cellulose through fermentation, similar to many other arthropods. However, this hypothesis lacks sufficient evidence. To investigate this, we used inhibitors to disrupt the gut microbiota of juvenile Epibolus pulchripes (tropical, CH4-emitting) and Glomeris connexa (temperate, non-CH4-emitting) and isotopic labelling. Feeding the millipedes sterile or antibiotics-treated litter reduced faecal production and microbial load without major impacts on survival or weight. Bacterial diversity remained similar, with Bacteroidota dominant in E. pulchripes and Pseudomonadota in G. connexa. Sodium-2-bromoethanesulfonate treatment halted CH4 emissions in E. pulchripes, but it resumed after returning to normal feeding. Employing 13C-labeled leaf litter and RNA-SIP revealed a slow and gradual prokaryote labelling, indicating a significant density shift only by day 21. Surprisingly, labelling of the fungal biomass was somewhat quicker. Our findings suggest that fermentation by the gut microbiota is likely not essential for the millipede's nutrition.
- MeSH
- Bacteria metabolism genetics MeSH
- Arthropods * microbiology metabolism MeSH
- Feces microbiology MeSH
- Fermentation * MeSH
- Plant Leaves metabolism microbiology MeSH
- Gastrointestinal Microbiome * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Stable-isotope probing (SIP) enables researchers to target active populations within complex microbial communities, which is achieved by providing growth substrates enriched in heavy isotopes, usually in the form of 13C, 18O, or 15N. After growth on the substrate and subsequent extraction of microbial biomarkers, typically nucleic acids or proteins, the SIP technique is used for the recovery and analysis of isotope-labelled biomarkers from active microbial populations. In the years following the initial development of DNA- and RNA-based SIP, it was common practice to characterize labelled populations by targeted gene analysis. Such approaches usually involved fingerprint-based analyses or sequencing clone libraries containing 16S rRNA genes or functional marker gene amplicons. Although molecular fingerprinting remains a valuable approach for rapid confirmation of isotope labelling, recent advances in sequencing technology mean that it is possible to obtain affordable and comprehensive amplicon profiles, or even metagenomes and metatranscriptomes from SIP experiments. Not only can the abundance of microbial groups be inferred from metagenomes, but researchers can bin, assemble, and explore individual genomes to build hypotheses about the metabolic capabilities of labelled microorganisms. Analysis of labelled mRNA is a more recent advance that can provide independent metatranscriptome-based analysis of active microorganisms. The power of metatranscriptomics is that mRNA abundance often correlates closely with the corresponding activity of encoded enzymes, thus providing insight into microbial metabolism at the time of sampling. Together, these advances have improved the sensitivity of SIP methods and allowed using labelled substrates at environmentally relevant concentrations. Particularly as methods improve and costs continue to drop, we expect that the integration of SIP with multiple omics-based methods will become prevalent components of microbial ecology studies, leading to further breakthroughs in our understanding of novel microbial populations and elucidation of the metabolic function of complex microbial communities. In this chapter, we provide protocols for obtaining labelled DNA, RNA, and proteins that can be used for downstream omics-based analyses.
- Keywords
- DNA, Metagenomics, Metatranscriptomics, Protein, Proteomics, RNA, Stable-isotope probing,
- MeSH
- Biomarkers MeSH
- DNA * chemistry MeSH
- Isotope Labeling methods MeSH
- Carbon Isotopes chemistry MeSH
- RNA, Messenger MeSH
- Proteins * chemistry MeSH
- RNA, Ribosomal, 16S genetics chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biomarkers MeSH
- DNA * MeSH
- Carbon Isotopes MeSH
- RNA, Messenger MeSH
- Proteins * MeSH
- RNA, Ribosomal, 16S MeSH