Nejvíce citovaný článek - PubMed ID 31601021
Adaptive Radiation from a Chromosomal Perspective: Evidence of Chromosome Set Stability in Cichlid Fishes (Cichlidae: Teleostei) from the Barombi Mbo Lake, Cameroon
Sex chromosome replacement is frequent in many vertebrate clades, including fish, frogs, and lizards. In order to understand the mechanisms responsible for sex chromosome turnover and the early stages of sex chromosome divergence, it is necessary to study lineages with recently evolved sex chromosomes. Here we examine sex chromosome evolution in a group of African cichlid fishes (tribe Tropheini) which began to diverge from one another less than 4 MYA. We have evidence for a previously unknown sex chromosome system, and preliminary indications of several additional systems not previously reported in this group. We find a high frequency of sex chromosome turnover and estimate a minimum of 14 turnovers in this tribe. We date the origin of the most common sex determining system in this tribe (XY-LG5/19) near the base of one of two major sub-clades of this tribe, about 3.4 MY ago. Finally, we observe variation in the size of one sex-determining region that suggests independent evolution of evolutionary strata in species with a shared sex-determination system. Our results illuminate the rapid rate of sex chromosome turnover in the tribe Tropheini and set the stage for further studies of the dynamics of sex chromosome evolution in this group.
- MeSH
- cichlidy * genetika MeSH
- fylogeneze MeSH
- jezera MeSH
- mitochondriální DNA genetika MeSH
- molekulární evoluce MeSH
- pohlavní chromozomy genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Tanzanie MeSH
- Názvy látek
- mitochondriální DNA MeSH
Salmonids are extremely important economically and scientifically; therefore, dynamic developments in their research have occurred and will continue occurring in the future. At the same time, their complex phylogeny and taxonomy are challenging for traditional approaches in research. Here, we first provide discoveries regarding the hitherto completely unknown cytogenetic characteristics of the Anatolian endemic flathead trout, Salmo platycephalus, and summarize the presently known, albeit highly complicated, situation in the genus Salmo. Secondly, by outlining future directions of salmonid cytogenomics, we have produced a prototypical virtual karyotype of Salmo trutta, the closest relative of S. platycephalus. This production is now possible thanks to the high-quality genome assembled to the chromosome level in S. trutta via soft-masking, including a direct labelling of repetitive sequences along the chromosome sequence. Repetitive sequences were crucial for traditional fish cytogenetics and hence should also be utilized in fish cytogenomics. As such virtual karyotypes become increasingly available in the very near future, it is necessary to integrate both present and future approaches to maximize their respective benefits. Finally, we show how the presumably repetitive sequences in salmonids can change the understanding of the overall relationship between genome size and G+C content, creating another outstanding question in salmonid cytogenomics waiting to be resolved.
- Klíčová slova
- FISH, NOR phenotype, Salmo platycephalus, chromosome banding, cytotaxonomy of trout, rDNA,
- MeSH
- chromozomy genetika MeSH
- genom * MeSH
- karyotypizace * MeSH
- Salmonidae genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH