Nejvíce citovaný článek - PubMed ID 15131652
Sex chromosome replacement is frequent in many vertebrate clades, including fish, frogs, and lizards. In order to understand the mechanisms responsible for sex chromosome turnover and the early stages of sex chromosome divergence, it is necessary to study lineages with recently evolved sex chromosomes. Here we examine sex chromosome evolution in a group of African cichlid fishes (tribe Tropheini) which began to diverge from one another less than 4 MYA. We have evidence for a previously unknown sex chromosome system, and preliminary indications of several additional systems not previously reported in this group. We find a high frequency of sex chromosome turnover and estimate a minimum of 14 turnovers in this tribe. We date the origin of the most common sex determining system in this tribe (XY-LG5/19) near the base of one of two major sub-clades of this tribe, about 3.4 MY ago. Finally, we observe variation in the size of one sex-determining region that suggests independent evolution of evolutionary strata in species with a shared sex-determination system. Our results illuminate the rapid rate of sex chromosome turnover in the tribe Tropheini and set the stage for further studies of the dynamics of sex chromosome evolution in this group.
- MeSH
- cichlidy * genetika MeSH
- fylogeneze MeSH
- jezera MeSH
- mitochondriální DNA genetika MeSH
- molekulární evoluce MeSH
- pohlavní chromozomy genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Tanzanie MeSH
- Názvy látek
- mitochondriální DNA MeSH
African cichlids (subfamily: Pseudocrenilabrinae) are among the most diverse vertebrates, and their propensity for repeated rapid radiation has made them a celebrated model system in evolutionary research. Nonetheless, despite numerous studies, phylogenetic uncertainty persists, and riverine lineages remain comparatively underrepresented in higher-level phylogenetic studies. Heterogeneous gene histories resulting from incomplete lineage sorting (ILS) and hybridization are likely sources of uncertainty, especially during episodes of rapid speciation. We investigate the relationships of Pseudocrenilabrinae and its close relatives while accounting for multiple sources of genetic discordance using species tree and hybrid network analyses with hundreds of single-copy exons. We improve sequence recovery for distant relatives, thereby extending the taxonomic reach of our probes, with a hybrid reference guided/de novo assembly approach. Our analyses provide robust hypotheses for most higher-level relationships and reveal widespread gene heterogeneity, including in riverine taxa. ILS and past hybridization are identified as the sources of genetic discordance in different lineages. Sampling of various Blenniiformes (formerly Ovalentaria) adds strong phylogenomic support for convict blennies (Pholidichthyidae) as sister to Cichlidae and points to other potentially useful protein-coding markers across the order. A reliable phylogeny with representatives from diverse environments will support ongoing taxonomic and comparative evolutionary research in the cichlid model system. [African cichlids; Blenniiformes; Gene tree heterogeneity; Hybrid assembly; Phylogenetic network; Pseudocrenilabrinae; Species tree.].
The visual sensory system is essential for animals to perceive their environment and is thus under strong selection. In aquatic environments, light intensity and spectrum differ primarily along a depth gradient. Rhodopsin (RH1) is the only opsin responsible for dim-light vision in vertebrates and has been shown to evolve in response to the respective light conditions, including along a water depth gradient in fishes. In this study, we examined the diversity and sequence evolution of RH1 in virtually the entire adaptive radiation of cichlid fishes in Lake Tanganyika, focusing on adaptations to the environmental light with respect to depth. We show that Tanganyikan cichlid genomes contain a single copy of RH1. The 76 variable amino acid sites detected in RH1 across the radiation were not uniformly distributed along the protein sequence, and 31 of these variable sites show signals of positive selection. Moreover, the amino acid substitutions at 15 positively selected sites appeared to be depth-related, including three key tuning sites that directly mediate shifts in the peak spectral sensitivity, one site involved in protein stability and 11 sites that may be functionally important on the basis of their physicochemical properties. Among the strongest candidate sites for deep-water adaptations are two known key tuning sites (positions 292 and 299) and three newly identified variable sites (37, 104 and 290). Our study, which is the first comprehensive analysis of RH1 evolution in a massive adaptive radiation of cichlid fishes, provides novel insights into the evolution of RH1 in a freshwater environment.
- Klíčová slova
- freshwater fish, opsin, photic environment, rod photoreceptor, spectral tuning, vision,
- MeSH
- cichlidy * genetika MeSH
- fylogeneze MeSH
- jezera MeSH
- molekulární evoluce MeSH
- rodopsin genetika MeSH
- ryby MeSH
- voda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Tanzanie MeSH
- Názvy látek
- rodopsin MeSH
- voda MeSH
Parasites may have strong eco-evolutionary interactions with their hosts. Consequently, they may contribute to host diversification. The radiation of cichlid fish in Lake Victoria provides a good model to study the role of parasites in the early stages of speciation. We investigated patterns of macroparasite infection in a community of 17 sympatric cichlids from a recent radiation and 2 older species from 2 nonradiating lineages, to explore the opportunity for parasite-mediated speciation. Host species had different parasite infection profiles, which were only partially explained by ecological factors (diet, water depth). This may indicate that differences in infection are not simply the result of differences in exposure, but that hosts evolved species-specific resistance, consistent with parasite-mediated divergent selection. Infection was similar between sampling years, indicating that the direction of parasite-mediated selection is stable through time. We morphologically identified 6 Cichlidogyrus species, a gill parasite that is considered a good candidate for driving parasite-mediated speciation, because it is host species-specific and has radiated elsewhere in Africa. Species composition of Cichlidogyrus infection was similar among the most closely related host species (members of the Lake Victoria radiation), but two more distantly related species (belonging to nonradiating sister lineages) showed distinct infection profiles. This is inconsistent with a role for Cichlidogyrus in the early stages of divergence. To conclude, we find significant interspecific variation in parasite infection profiles, which is temporally consistent. We found no evidence that Cichlidogyrus-mediated selection contributes to the early stages of speciation. Instead, our findings indicate that species differences in infection accumulate after speciation.
- Klíčová slova
- Lake Victoria, adaptive radiation, cichlid fish, diversification, host-parasite interaction, parasite-mediated selection, temporal consistency,
- MeSH
- cichlidy genetika parazitologie MeSH
- Copepoda MeSH
- ekosystém MeSH
- hostitelská specificita * MeSH
- selekce (genetika) * MeSH
- Trematoda * MeSH
- vznik druhů (genetika) * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Geografické názvy
- Tanzanie MeSH
Cichlid fishes are the subject of scientific interest because of their rapid adaptive radiation, resulting in extensive ecological and taxonomic diversity. In this study, we examined 11 morphologically distinct cichlid species endemic to Barombi Mbo, the largest crater lake in western Cameroon, namely Konia eisentrauti, Konia dikume, Myaka myaka, Pungu maclareni, Sarotherodon steinbachi, Sarotherodon lohbergeri, Sarotherodon linnellii, Sarotherodon caroli, Stomatepia mariae, Stomatepia pindu, and Stomatepia mongo. These species supposedly evolved via sympatric ecological speciation from a common ancestor, which colonized the lake no earlier than one million years ago. Here we present the first comparative cytogenetic analysis of cichlid species from Barombi Mbo Lake using both conventional (Giemsa staining, C-banding, and CMA3/DAPI staining) and molecular (fluorescence in situ hybridization with telomeric, 5S, and 28S rDNA probes) methods. We observed stability on both macro and micro-chromosomal levels. The diploid chromosome number was 2n = 44, and the karyotype was invariably composed of three pairs of meta/submetacentric and 19 pairs of subtelo/acrocentric chromosomes in all analysed species, with the same numbers of rDNA clusters and distribution of heterochromatin. The results suggest the evolutionary stability of chromosomal set; therefore, the large-scale chromosomal rearrangements seem to be unlikely associated with the sympatric speciation in Barombi Mbo.
- Klíčová slova
- African endemic fishes, FISH, Karyotype, adaptive radiation, chromosome banding, chromosome stasis, cytotaxonomy, rDNA,
- MeSH
- biologická adaptace genetika účinky záření MeSH
- biologická evoluce MeSH
- chromozomální nestabilita účinky záření MeSH
- cichlidy genetika MeSH
- hybridizace in situ fluorescenční MeSH
- jezera MeSH
- karyotyp MeSH
- karyotypizace MeSH
- mapování chromozomů MeSH
- pruhování chromozomů MeSH
- telomery genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Kamerun MeSH
BACKGROUND: Cichlids are a prime model system in evolutionary research and several of the most prominent examples of adaptive radiations are found in the East African Lakes Tanganyika, Malawi and Victoria, all part of the East African cichlid radiation (EAR). In the past, great effort has been invested in reconstructing the evolutionary and biogeographic history of cichlids (Teleostei: Cichlidae). In this study, we present new divergence age estimates for the major cichlid lineages with the main focus on the EAR based on a dataset encompassing representative taxa of almost all recognized cichlid tribes and ten mitochondrial protein genes. We have thoroughly re-evaluated both fossil and geological calibration points, and we included the recently described fossil †Tugenchromis pickfordi in the cichlid divergence age estimates. RESULTS: Our results estimate the origin of the EAR to Late Eocene/Early Oligocene (28.71 Ma; 95% HPD: 24.43-33.15 Ma). More importantly divergence ages of the most recent common ancestor (MRCA) of several Tanganyika cichlid tribes were estimated to be substantially older than the oldest estimated maximum age of the Lake Tanganyika: Trematocarini (16.13 Ma, 95% HPD: 11.89-20.46 Ma), Bathybatini (20.62 Ma, 95% HPD: 16.88-25.34 Ma), Lamprologini (15.27 Ma; 95% HPD: 12.23-18.49 Ma). The divergence age of the crown haplochromine H-lineage is estimated to 22.8 Ma (95% HPD: 14.40-26.32 Ma) and of the Lake Malawi radiation to 4.07 Ma (95% HDP: 2.93-5.26 Ma). In addition, we recovered a novel lineage within the Lamprologini tribe encompassing only Lamprologus of the lower and central Congo drainage with its divergence estimated to the Late Miocene or early Pliocene. Furthermore we recovered two novel mitochondrial haplotype lineages within the Haplochromini tribe: 'Orthochromis' indermauri and 'Haplochormis' vanheusdeni. CONCLUSIONS: Divergence time estimates of the MRCA of several Tanganyika cichlid tribes predate the age of the extant Lake Tanganyika basin, and hence are in line with the recently formulated "Melting-Pot Tanganyika" hypothesis. The radiation of the 'Lower Congo Lamprologus clade' might be linked with the Pliocene origin of the modern lower Congo rapids as has been shown for other Lower Congo cichlid assemblages. Finally, the age of origin of the Lake Malawi cichlid flock agrees well with the oldest age estimate for lacustrine conditions in Lake Malawi.
- Klíčová slova
- African Great Lakes, Congo River, East African cichlid radiation (EAR), Lamprologini, Molecular clock, Tugenchromis,
- MeSH
- biologická evoluce * MeSH
- časové faktory MeSH
- cichlidy klasifikace genetika MeSH
- fylogeneze MeSH
- genetická variace * MeSH
- jezera * MeSH
- kalibrace MeSH
- mitochondriální DNA genetika MeSH
- mitochondriální geny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Kongo MeSH
- Tanzanie MeSH
- Názvy látek
- mitochondriální DNA MeSH
BACKGROUND: Species delineation is particularly challenging in taxa with substantial intra-specific variation. In systematic studies of fishes, meristics and linear measurements that describe shape are often used to delineate species. Yet, little is known about the taxonomic value of these two types of morphological characteristics. Here, we used Tropheus (Teleostei, Cichlidae) from the southern subbasin of Lake Tanganyika to test which of these types of characters best matched genetic lineages that could represent species in this group of stenotypic rock-dwelling cichlids. We further investigated intra-population variation in morphology. By linking this to a proxy of a population's age, we could assess the evolutionary stability of different kinds of morphological markers. RESULTS: Morphological data was collected from 570 specimens originating from 86 localities. An AFLP approach revealed the presence of five lineages in the southern subbasin: T. moorii, T. brichardi, T. sp. 'maculatus', T. sp. 'Mpimbwe' and T. sp. 'red', which we consider to represent distinct species. Although both types of morphological data supported this classification, a comparison of PST-values that describe inter-population morphological differentiation, revealed a better correspondence between the taxon delineation based on AFLP data and the patterns revealed by an analysis of meristics than between the AFLP-based taxon delineation and the patterns revealed by an analysis of shape. However, classifying southern populations of Tropheus was inherently difficult as they contained a large amount of clinal variation, both in genetic and in morphological data, and both within and among species. A scenario is put forward to explain the current-day distribution of the species and colour varieties and the observed clinal variation across the subbasin's shoreline. Additionally, we observed that variation in shape was larger in populations from shallow shores whereas populations from steep shores were more variable in meristics. This difference is explained in terms of the different timescales at which small and large scale lake level fluctuations affected populations of littoral cichlids at steep and shallow shores. CONCLUSIONS: Our results showed meristics to be more evolutionary stable, and of higher taxonomic value for species delimitation in Tropheus, than linear measurements that describe shape. These results should be taken into account when interpreting morphological differences between populations of highly stenotypic species, such as littoral cichlids from the Great East African Lakes.
- Klíčová slova
- AFLP, Africa, Body shape, Clinal variation, Evolution, Meristics, Morphology, PST, Population differentiation, Species delimitation,
- Publikační typ
- časopisecké články MeSH
Seven new species of Cichlidogyrus Paperna, 1960 (Monogenea: Dactylogyridae) isolated from the gills of six cichlid host species belonging to four tribes and sampled from the Congolese coastline of Lake Tanganyika (LT) are described: Cichlidogyrus adkoningsi sp. nov. from Cyphotilapia frontosa (tribe Cyphotilapiini); C. koblmuelleri sp. nov. from Cardiopharynx schoutedeni (Ectodini); C. habluetzeli sp. nov. from C. schoutedeni and C. frontosa; C. antoineparisellei sp. nov. from Interochromis loocki (Tropheini); C. masilyai sp. nov. from Petrochromis orthognathus (Tropheini); C. salzburgeri sp. nov. from P. trewavasae, and C. sergemorandi sp. nov. from Tylochromis polylepis (Tylochromini). This study represents the first parasitological examination of cyphotilapiine cichlid hosts. Representatives of the Tanganyikan ectodine, tropheine, and tylochromine cichlids previously sampled from various localities in the lake yielded nine, twelve, and two described species of Cichlidogyrus, respectively. The study further includes a morphological characterization of the male copulatory organ of six undescribed species of Cichlidogyrus found on the gills of the tropheines I. loocki and P. orthognathus, and on those of Callochromis melanostigma and Xenotilapia flavipinnis (both Ectodini). Geographical variation in the monogenean fauna of I. loocki was observed. The most closely related cichlid species investigated in this study harboured Cichlidogyrus spp. exhibiting some similarities in their sclerotized structures. Thus, our paper provides additional evidence of the high species richness of Cichlidogyrus and the link with their hosts's phylogenetic affinities in LT.
- Klíčová slova
- C. adkoningsi sp. nov., C. antoineparisellei sp. nov., C. habluetzeli sp. nov., C. koblmuelleri sp. nov., C. masilyai sp. nov., C. salzburgeri sp. nov., C. sergemorandi sp. nov., Callochromis, Cardiopharynx, Cichlidae, Congo, Cyphotilapia, Interochromis, Petrochromis, Platyhelminthes, Tylochromis, Xenotilapia,
- Publikační typ
- časopisecké články MeSH
Lake Tanganyika is well-known for its high species-richness and rapid radiation processes. Its assemblage of cichlid fishes recently gained momentum as a framework to study parasite ecology and evolution. It offers a rare chance to investigate the influence of a deepwater lifestyle in a freshwater fish-parasite system. Our study represents the first investigation of parasite intraspecific genetic structure related to host specificity in the lake. It focused on the monogenean flatworm Cichlidogyrus casuarinus infecting deepwater cichlids belonging to Bathybates and Hemibates. Morphological examination of C. casuarinus had previously suggested a broad host range, while the lake's other Cichlidogyrus species are usually host specific. However, ongoing speciation or cryptic diversity could not be excluded. To distinguish between these hypotheses, we analysed intraspecific diversity of C. casuarinus. Monogeneans from nearly all representatives of the host genera were examined using morphometrics, geomorphometrics and genetics. We confirmed the low host-specificity of C. casuarinus based on morphology and nuclear DNA. Yet, intraspecific variation of sclerotized structures was observed. Nevertheless, the highly variable mitochondrial DNA indicated recent population expansion, but no ongoing parasite speciation, confirming, for the first time in freshwater, reduced parasite host specificity in the deepwater realm, probably an adaptation to low host availability.
- MeSH
- analýza hlavních komponent MeSH
- Bayesova věta MeSH
- biologická evoluce MeSH
- cichlidy genetika parazitologie MeSH
- fylogeneze MeSH
- genetická variace MeSH
- haplotypy MeSH
- hostitelská specificita MeSH
- jezera MeSH
- paraziti genetika MeSH
- ploštěnci genetika MeSH
- populační dynamika MeSH
- žábry parazitologie MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Tanzanie MeSH
Monogenea is one of the most species-rich groups of parasitic flatworms worldwide, with many species described only recently, which is particularly true for African monogeneans. For example, Cichlidogyrus, a genus mostly occurring on African cichlids, comprises more than 100 nominal species. Twenty-two of these have been described from Lake Tanganyika, a famous biodiversity hotspot in which many vertebrate and invertebrate taxa, including monogeneans, underwent unique and spectacular radiations. Given their often high degrees of host specificity, parasitic monogeneans were also used as a potential tool to uncover host species relationships. This study presents the first investigation of the monogenean fauna occurring on the gills of endemic 'Gnathochromis' species along the Burundese coastline of Lake Tanganyika. We test whether their monogenean fauna reflects the different phylogenetic position and ecological niche of 'Gnathochromis' pfefferi and Gnathochromis permaxillaris. Worms collected from specimens of Limnochromis auritus, a cichlid belonging to the same cichlid tribe as G. permaxillaris, were used for comparison. Morphological as well as genetic characterisation was used for parasite identification. In total, all 73 Cichlidogyrus individuals collected from 'G.' pfefferi were identified as C. irenae. This is the only representative of Cichlidogyrus previously described from 'G.' pfefferi, its type host. Gnathochromis permaxillaris is infected by a species of Cichlidogyrus morphologically very similar to C. gillardinae. The monogenean species collected from L. auritus is considered as new for science, but sample size was insufficient for a formal description. Our results confirm previous suggestions that 'G.' pfefferi as a good disperser is infected by a single monogenean species across the entire Lake Tanganyika. Although G. permaxillaris and L. auritus are placed in the same tribe, Cichlidogyrus sp. occurring on G. permaxillaris is morphologically more similar to C. irenae from 'G.' pfefferi, than to the Cichlidogyrus species found on L. auritus. Various evolutionary processes, such as host-switching or duplication events, might underlie the pattern observed in this particular parasite-host system. Additional samples for the Cichlidogyrus species occuring on G. permaxillaris and L. auritus are needed to unravel their evolutionary history by means of (co-)phylogenetic analyses.
- Klíčová slova
- Cichlidogyrus, Ectoparasites, Lake Tanganyika, Limnochromini, Tropheini,
- Publikační typ
- časopisecké články MeSH