Nejvíce citovaný článek - PubMed ID 31678518
Fenretinide favorably affects mucins (MUC5AC/MUC5B) and fatty acid imbalance in a manner mimicking CFTR-induced correction
Inflammatory lung diseases (ILDs) represent a global public health crisis characterized by escalating prevalence, significant morbidity, and substantial mortality. In response to the complex immunopathogenic mechanisms driving these conditions, novel pharmacological strategies targeting resolution pathways have emerged throughout the discovery of specialized pro-resolving lipid mediator (SPM; resolvins, maresins, and protectins) dysregulation across the ILD spectra, positioning these endogenous molecules as promising therapeutic candidates for modulating maladaptive inflammation and promoting tissue repair. Over the past decade, this paradigm has catalyzed extensive translational research into SPM-based interventions as precision therapeutics for respiratory inflammation. In asthma, they reduce mucus hypersecretion, bronchial hyperreactivity, and airway inflammation, with prenatal SPM exposure potentially lowering offspring disease risk. In COPD, SPMs attenuate amyloid A-driven inflammation, normalizing cytokine/chemokine imbalances and oxidative stress and mitigating COVID-19-associated cytokine storm, enhancing survival. This review synthesizes SPMs' pharmacotherapeutic mechanisms in ILDs and evaluates current preclinical and clinical evidence.
- Klíčová slova
- COPD, PUFAs, inflammation, pulmonary diseases, specialized pro-resolving lipid mediators,
- MeSH
- chronická obstrukční plicní nemoc farmakoterapie metabolismus MeSH
- COVID-19 metabolismus MeSH
- kyseliny dokosahexaenové terapeutické užití metabolismus MeSH
- lidé MeSH
- plicní nemoci * farmakoterapie metabolismus MeSH
- SARS-CoV-2 MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- kyseliny dokosahexaenové MeSH
Cystic fibrosis (CF) is the most common autosomal recessive genetic disease in Caucasians, affecting more than 100,000 individuals worldwide. It is caused by pathogenic variants in the gene encoding CFTR, an anion channel at the plasma membrane of epithelial and other cells. Many CF pathogenic variants disrupt the biosynthesis and trafficking of CFTR or reduce its ion channel function. The most frequent mutation, loss of a phenylalanine at position 508 (F508del), leads to misfolding, retention in the endoplasmic reticulum, and premature degradation of the protein. The therapeutics available for treating CF lung disease include antibiotics, mucolytics, bronchodilators, physiotherapy, and most recently CFTR modulators. To date, no cure for this life shortening disease has been found. Treatment with the Triple combination drug therapy, TRIKAFTA®, is composed of three drugs: Elexacaftor (VX-445), Tezacaftor (VX-661) and Ivacaftor (VX-770). This therapy, benefits persons with CF, improving their weight, lung function, energy levels (as defined by reduced fatigue), and overall quality of life. We examined the effect of combining LAU-7b oral treatment and Triple therapy combination on lung function in a F508deltm1EUR mouse model that displays lung abnormalities relevant to human CF. We assessed lung function, lung histopathology, protein oxidation, lipid oxidation, and fatty acid and lipid profiles in F508deltm1EUR mice.
- Klíčová slova
- LAU-7b, TRIKAFTA, ceramides, cystic fibrosis, fenretinide (4-HPR), lung physiology, sphingolipids, triple therapy,
- Publikační typ
- časopisecké články MeSH
A deficiency in cystic fibrosis transmembrane conductance regulator (CFTR) function in CF leads to chronic lung disease. CF is associated with abnormalities in fatty acids, ceramides, and cholesterol, their relationship with CF lung pathology is not completely understood. Therefore, we examined the impact of CFTR deficiency on lipid metabolism and pro-inflammatory signaling in airway epithelium using mass spectrometric, protein array. We observed a striking imbalance in fatty acid and ceramide metabolism, associated with chronic oxidative stress under basal conditions in CF mouse lung and well-differentiated bronchial epithelial cell cultures of CFTR knock out pig and CF patients. Cell-autonomous features of all three CF models included high ratios of ω-6- to ω-3-polyunsaturated fatty acids and of long- to very long-chain ceramide species (LCC/VLCC), reduced levels of total ceramides and ceramide precursors. In addition to the retinoic acid analog fenretinide, the anti-oxidants glutathione (GSH) and deferoxamine partially corrected the lipid profile indicating that oxidative stress may promote the lipid abnormalities. CFTR-targeted modulators reduced the lipid imbalance and oxidative stress, confirming the CFTR dependence of lipid ratios. However, despite functional correction of CF cells up to 60% of non-CF in Ussing chamber experiments, a 72-h triple compound treatment (elexacaftor/tezacaftor/ivacaftor surrogate) did not completely normalize lipid imbalance or oxidative stress. Protein array analysis revealed differential expression and shedding of cytokines and growth factors from CF epithelial cells compared to non-CF cells, consistent with sterile inflammation and tissue remodeling under basal conditions, including enhanced secretion of the neutrophil activator CXCL5, and the T-cell activator CCL17. However, treatment with antioxidants or CFTR modulators that mimic the approved combination therapies, ivacaftor/lumacaftor and ivacaftor/tezacaftor/elexacaftor, did not effectively suppress the inflammatory phenotype. We propose that CFTR deficiency causes oxidative stress in CF airway epithelium, affecting multiple bioactive lipid metabolic pathways, which likely play a role in CF lung disease progression. A combination of anti-oxidant, anti-inflammatory and CFTR targeted therapeutics may be required for full correction of the CF phenotype.
Cystic fibrosis (CF) is the most common autosomal-recessive disease in Caucasians caused by mutations in the CF transmembrane regulator (CFTR) gene. Patients are usually diagnosed in infancy and are burdened with extensive medical treatments throughout their lives. One of the first documented biochemical defects in CF, which predates the cloning of CFTR gene for almost three decades, is an imbalance in the levels of polyunsaturated fatty acids (PUFAs). The principal hallmarks of this imbalance are increased levels of arachidonic acid and decreased levels of docosahexaenoic acids (DHA) in CF. This pro-inflammatory profile of PUFAs is an important component of sterile inflammation in CF, which is known to be detrimental, rather than protective for the patients. Despite decades of intensive research, the mechanistic basis of this phenomenon remains unclear. In this review we summarized the current knowledge on the biochemistry of PUFAs, with a focus on the metabolism of AA and DHA in CF. Finally, a synthetic retinoid called fenretinide (N-(4-hydroxy-phenyl) retinamide) was shown to be able to correct the pro-inflammatory imbalance of PUFAs in CF. Therefore, its pharmacological actions and clinical potential are briefly discussed as well.
- Klíčová slova
- CFTR, Cystic fibrosis, Fenretinide, Lipids, PUFAs,
- MeSH
- antiflogistika farmakologie terapeutické užití MeSH
- cystická fibróza farmakoterapie metabolismus MeSH
- esenciální mastné kyseliny metabolismus MeSH
- fenretinid farmakologie terapeutické užití MeSH
- lidé MeSH
- nenasycené mastné kyseliny metabolismus MeSH
- zánět farmakoterapie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antiflogistika MeSH
- esenciální mastné kyseliny MeSH
- fenretinid MeSH
- nenasycené mastné kyseliny MeSH