Nejvíce citovaný článek - PubMed ID 31739528
The Biological Effects of Complete Gasoline Engine Emissions Exposure in a 3D Human Airway Model (MucilAirTM) and in Human Bronchial Epithelial Cells (BEAS-2B)
INTRODUCTION: Studies have correlated living close to major roads with Alzheimer's disease (AD) risk. However, the mechanisms responsible for this link remain unclear. METHODS: We exposed olfactory mucosa (OM) cells of healthy individuals and AD patients to diesel emissions (DE). Cytotoxicity of exposure was assessed, mRNA, miRNA expression, and DNA methylation analyses were performed. The discovered altered pathways were validated using data from the human population-based Rotterdam Study. RESULTS: DE exposure resulted in an almost four-fold higher response in AD OM cells, indicating increased susceptibility to DE effects. Methylation analysis detected different DNA methylation patterns, revealing new exposure targets. Findings were validated by analyzing data from the Rotterdam Study cohort and demonstrated a key role of nuclear factor erythroid 2-related factor 2 signaling in responses to air pollutants. DISCUSSION: This study identifies air pollution exposure biomarkers and pinpoints key pathways activated by exposure. The data suggest that AD individuals may face heightened risks due to impaired cellular defenses. HIGHLIGHTS: Healthy and AD olfactory cells respond differently to DE exposure. AD cells are highly susceptible to DE exposure. The NRF2 oxidative stress response is highly activated upon air pollution exposure. DE-exposed AD cells activate the unfolded protein response pathway. Key findings are also confirmed in a population-based study.
- Klíčová slova
- Alzheimer's disease (AD), air pollution, air–liquid interface (ALI), heat shock protein (HSP), next‐generation sequencing (NGS), nuclear factor erythroid 2–related factor 2 (NRF2), traffic emissions, traffic‐related air pollution (TRAP) olfactory mucosa (OM),
- MeSH
- Alzheimerova nemoc * genetika metabolismus MeSH
- čichová sliznice metabolismus MeSH
- epigenomika MeSH
- faktor 2 související s NF-E2 genetika metabolismus MeSH
- látky znečišťující vzduch škodlivé účinky MeSH
- lidé středního věku MeSH
- lidé MeSH
- metylace DNA * MeSH
- mikro RNA metabolismus genetika MeSH
- senioři MeSH
- stanovení celkové genové exprese MeSH
- transkriptom MeSH
- výfukové emise vozidel * toxicita MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- faktor 2 související s NF-E2 MeSH
- látky znečišťující vzduch MeSH
- mikro RNA MeSH
- NFE2L2 protein, human MeSH Prohlížeč
- výfukové emise vozidel * MeSH
Gasoline engine emissions have been classified as possibly carcinogenic to humans and represent a significant health risk. In this study, we used MucilAir™, a three-dimensional (3D) model of the human airway, and BEAS-2B, cells originating from the human bronchial epithelium, grown at the air-liquid interface to assess the toxicity of ordinary gasoline exhaust produced by a direct injection spark ignition engine. The transepithelial electrical resistance (TEER), production of mucin, and lactate dehydrogenase (LDH) and adenylate kinase (AK) activities were analyzed after one day and five days of exposure. The induction of double-stranded DNA breaks was measured by the detection of histone H2AX phosphorylation. Next-generation sequencing was used to analyze the modulation of expression of the relevant 370 genes. The exposure to gasoline emissions affected the integrity, as well as LDH and AK leakage in the 3D model, particularly after longer exposure periods. Mucin production was mostly decreased with the exception of longer BEAS-2B treatment, for which a significant increase was detected. DNA damage was detected after five days of exposure in the 3D model, but not in BEAS-2B cells. The expression of CYP1A1 and GSTA3 was modulated in MucilAir™ tissues after 5 days of treatment. In BEAS-2B cells, the expression of 39 mRNAs was affected after short exposure, most of them were upregulated. The five days of exposure modulated the expression of 11 genes in this cell line. In conclusion, the ordinary gasoline emissions induced a toxic response in MucilAir™. In BEAS-2B cells, the biological response was less pronounced, mostly limited to gene expression changes.
- Klíčová slova
- MucilAir™, air-liquid interface, bronchial epithelial cells, gasoline emissions, toxicity,
- MeSH
- adenylátkinasa metabolismus MeSH
- bronchy cytologie MeSH
- dvouřetězcové zlomy DNA MeSH
- elektrická impedance MeSH
- epitelové buňky účinky léků metabolismus MeSH
- kultivované buňky MeSH
- L-laktátdehydrogenasa metabolismus MeSH
- lidé MeSH
- muciny metabolismus MeSH
- testy toxicity metody MeSH
- transkriptom MeSH
- výfukové emise vozidel toxicita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenylátkinasa MeSH
- L-laktátdehydrogenasa MeSH
- muciny MeSH
- výfukové emise vozidel MeSH