Nejvíce citovaný článek - PubMed ID 32068507
OBJECTIVES: Artificial Intelligence (AI), particularly deep learning, has significantly impacted healthcare, including dentistry, by improving diagnostics, treatment planning, and prognosis prediction. This systematic mapping review explores the current applications of deep learning in dentistry, offering a comprehensive overview of trends, models, and their clinical significance. MATERIALS AND METHODS: Following a structured methodology, relevant studies published from January 2012 to September 2023 were identified through database searches in PubMed, Scopus, and Embase. Key data, including clinical purpose, deep learning tasks, model architectures, and data modalities, were extracted for qualitative synthesis. RESULTS: From 21,242 screened studies, 1,007 were included. Of these, 63.5% targeted diagnostic tasks, primarily with convolutional neural networks (CNNs). Classification (43.7%) and segmentation (22.9%) were the main methods, and imaging data-such as cone-beam computed tomography and orthopantomograms-were used in 84.4% of cases. Most studies (95.2%) applied fully supervised learning, emphasizing the need for annotated data. Pathology (21.5%), radiology (17.5%), and orthodontics (10.2%) were prominent fields, with 24.9% of studies relating to more than one specialty. CONCLUSION: This review explores the advancements in deep learning in dentistry, particulary for diagnostics, and identifies areas for further improvement. While CNNs have been used successfully, it is essential to explore emerging model architectures, learning approaches, and ways to obtain diverse and reliable data. Furthermore, fostering trust among all stakeholders by advancing explainable AI and addressing ethical considerations is crucial for transitioning AI from research to clinical practice. CLINICAL RELEVANCE: This review offers a comprehensive overview of a decade of deep learning in dentistry, showcasing its significant growth in recent years. By mapping its key applications and identifying research trends, it provides a valuable guide for future studies and highlights emerging opportunities for advancing AI-driven dental care.
- Klíčová slova
- Artificial intelligence, Deep learning, Dentistry, Diagnostic imaging, Neural networks,
- MeSH
- deep learning * MeSH
- lidé MeSH
- zubní lékařství * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- systematický přehled MeSH
OBJECTIVES: Currently, hurdles to implementation of artificial intelligence (AI) in radiology are a much-debated topic but have not been investigated in the community at large. Also, controversy exists if and to what extent AI should be incorporated into radiology residency programs. METHODS: Between April and July 2019, an international survey took place on AI regarding its impact on the profession and training. The survey was accessible for radiologists and residents and distributed through several radiological societies. Relationships of independent variables with opinions, hurdles, and education were assessed using multivariable logistic regression. RESULTS: The survey was completed by 1041 respondents from 54 countries. A majority (n = 855, 82%) expects that AI will cause a change to the radiology field within 10 years. Most frequently, expected roles of AI in clinical practice were second reader (n = 829, 78%) and work-flow optimization (n = 802, 77%). Ethical and legal issues (n = 630, 62%) and lack of knowledge (n = 584, 57%) were mentioned most often as hurdles to implementation. Expert respondents added lack of labelled images and generalizability issues. A majority (n = 819, 79%) indicated that AI should be incorporated in residency programs, while less support for imaging informatics and AI as a subspecialty was found (n = 241, 23%). CONCLUSIONS: Broad community demand exists for incorporation of AI into residency programs. Based on the results of the current study, integration of AI education seems advisable for radiology residents, including issues related to data management, ethics, and legislation. KEY POINTS: • There is broad demand from the radiological community to incorporate AI into residency programs, but there is less support to recognize imaging informatics as a radiological subspecialty. • Ethical and legal issues and lack of knowledge are recognized as major bottlenecks for AI implementation by the radiological community, while the shortage in labeled data and IT-infrastructure issues are less often recognized as hurdles. • Integrating AI education in radiology curricula including technical aspects of data management, risk of bias, and ethical and legal issues may aid successful integration of AI into diagnostic radiology.
- Klíčová slova
- Artificial intelligence, Diagnostic imaging, Radiology, Surveys and questionnaires,
- MeSH
- lidé MeSH
- motivace MeSH
- průzkumy a dotazníky MeSH
- radiologie * MeSH
- radiologové MeSH
- umělá inteligence * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: Radiologists' perception is likely to influence the adoption of artificial intelligence (AI) into clinical practice. We investigated knowledge and attitude towards AI by radiologists and residents in Europe and beyond. METHODS: Between April and July 2019, a survey on fear of replacement, knowledge, and attitude towards AI was accessible to radiologists and residents. The survey was distributed through several radiological societies, author networks, and social media. Independent predictors of fear of replacement and a positive attitude towards AI were assessed using multivariable logistic regression. RESULTS: The survey was completed by 1,041 respondents from 54 mostly European countries. Most respondents were male (n = 670, 65%), median age was 38 (24-74) years, n = 142 (35%) residents, and n = 471 (45%) worked in an academic center. Basic AI-specific knowledge was associated with fear (adjusted OR 1.56, 95% CI 1.10-2.21, p = 0.01), while intermediate AI-specific knowledge (adjusted OR 0.40, 95% CI 0.20-0.80, p = 0.01) or advanced AI-specific knowledge (adjusted OR 0.43, 95% CI 0.21-0.90, p = 0.03) was inversely associated with fear. A positive attitude towards AI was observed in 48% (n = 501) and was associated with only having heard of AI, intermediate (adjusted OR 11.65, 95% CI 4.25-31.92, p < 0.001), or advanced AI-specific knowledge (adjusted OR 17.65, 95% CI 6.16-50.54, p < 0.001). CONCLUSIONS: Limited AI-specific knowledge levels among radiology residents and radiologists are associated with fear, while intermediate to advanced AI-specific knowledge levels are associated with a positive attitude towards AI. Additional training may therefore improve clinical adoption. KEY POINTS: • Forty-eight percent of radiologists and residents have an open and proactive attitude towards artificial intelligence (AI), while 38% fear of replacement by AI. • Intermediate and advanced AI-specific knowledge levels may enhance adoption of AI in clinical practice, while rudimentary knowledge levels appear to be inhibitive. • AI should be incorporated in radiology training curricula to help facilitate its clinical adoption.
- Klíčová slova
- Artificial intelligence, Diagnostic imaging, Radiology, Surveys and questionnaires,
- MeSH
- dospělí MeSH
- lidé MeSH
- průzkumy a dotazníky MeSH
- radiologie * MeSH
- radiologové MeSH
- strach MeSH
- umělá inteligence * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH