Most cited article - PubMed ID 32118473
Perception and pain thresholds of tDCS and tACS
In recent years, the dynamics and function of cross-frequency coupling (CFC) in electroencephalography (EEG) have emerged as a prevalent area of investigation within the research community. One possible approach in studying CFC is to utilize non-invasive neuromodulation methods such as transcranial alternating current stimulation (tACS) and neurofeedback (NFB). In this study, we address (1) the potential applicability of single and multifrequency tACS and NFB protocols in CFC research; (2) the prevalence of CFC types, such as phase-amplitude or amplitude-amplitude CFC, in tACS and NFB studies; and (3) factors that contribute to inter- and intraindividual variability in CFC and ways to address them potentially. Here we analyzed research studies on CFC, tACS, and neurofeedback. Based on current knowledge, CFC types have been reported in tACS and NFB studies. We hypothesize that direct and indirect effects of tACS and neurofeedback can induce CFC. Several variability factors such as health status, age, fatigue, personality traits, and eyes-closed (EC) vs. eyes-open (EO)condition may influence the CFC types. Modifying the duration of the tACS and neurofeedback intervention and selecting a specific demographic experimental group could reduce these sources of CFC variability. Neurofeedback and tACS appear to be promising tools for studying CFC.
- Keywords
- EEG, cross-frequency coupling, neurofeedback, tACS, variability,
- Publication type
- Journal Article MeSH
Phosphene is the experience of light without natural visual stimulation. It can be induced by electrical stimulation of the retina, optic nerve or cortex. Induction of phosphenes can be potentially used in assistive devices for the blind. Analysis of phosphene might be beneficial for practical reasons such as adjustment of transcranial alternating current stimulation (tACS) frequency and intensity to eliminate phosphene perception (e.g., tACS studies using verum tACS group and sham group) or, on the contrary, to maximize perception of phosphenes in order to be more able to study their dynamics. In this study, subjective reports of 50 healthy subjects exposed to different intensities of retinal tACS at 4 different frequencies (6, 10, 20 and 40 Hz) were analyzed. The effectiveness of different tACS frequencies in inducing phosphenes was at least 92 %. Subject reported 41 different phosphene types; the most common were light flashes and light circles. Changing the intensity of stimulation often induced a change in phosphene attributes. Up to nine phosphene attributes changed when the tACS intensity was changed. Significant positive correlation was observed between number of a different phosphene types and tACS frequency. Based on these findings, it can be concluded that tACS is effective in eliciting phosphenes whose type and attributes change depending on the frequency and intensity of tACS. The presented results open new questions for future research.
- MeSH
- Phosphenes MeSH
- Humans MeSH
- Transcranial Direct Current Stimulation * MeSH
- Retina MeSH
- Photic Stimulation methods MeSH
- Visual Cortex * physiology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH