The relationship between working memory (WM) and neuronal oscillations can be studied in detail using brain stimulation techniques, which provide a method for modulating these oscillations and thus influencing WM. The endogenous coupling between the amplitude of gamma oscillations and the phase of theta oscillations is crucial for cognitive control. Theta/gamma peak-coupled transcranial alternating current stimulation (TGCp-tACS) can modulate this coupling and thus influence WM performance. This study investigated the effects of TGCp-tACS on WM in older adults and compared their responses with those of younger participants from our previous work who underwent the same experimental design. Twenty-eight older subjects underwent both TGCp-tACS and sham stimulation sessions at least 72 h apart. Resting-state electroencephalography (EEG) was recorded before and after the interventions, and a WM task battery with five different WM tasks was performed during the interventions to assess various WM components. Outcomes measured included WM task performance (e.g., accuracy, reaction time (RT)) and changes in power spectral density (PSD) in different frequency bands. TGCp-tACS significantly decreased accuracy and RT on the 10- and 14-point Sternberg tasks and increased RT on the Digit Symbol Substitution Test in older adults. In contrast, younger participants showed a significant increase in accuracy only on the 14-item Sternberg task. Electrophysiological analysis revealed a decrease in delta and theta PSD and an increase in high gamma PSD in both younger and older participants after verum stimulation. In conclusion, theta-gamma coupling is essential for WM and modulation of this coupling affects WM performance. The effects of TGCp-tACS on WM vary with age due to natural brain changes. To better support older adults, the study suggests several strategies to improve cognitive function, including: Adjusting stimulation parameters, applying stimulation to two sites, conducting multiple sessions, and using brain imaging techniques for precise targeting.
- Klíčová slova
- Electroencephalography (EEG), Power spectral density (PSD), Theta-gamma coupling, Transcranial alternating current stimulation (tACS), Working memory (WM),
- MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- gama rytmus EEG * fyziologie MeSH
- krátkodobá paměť * fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- přímá transkraniální stimulace mozku * MeSH
- reakční čas fyziologie MeSH
- senioři MeSH
- stárnutí fyziologie MeSH
- theta rytmus EEG * fyziologie MeSH
- zdraví MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Working memory (WM) is essential for the temporary storage and processing of information required for complex cognitive tasks and relies on neuronal theta and gamma oscillations. Given the limited capacity of WM, researchers have investigated various methods to improve it, including transcranial alternating current stimulation (tACS), which modulates brain activity at specific frequencies. One particularly promising approach is theta-gamma peak-coupled-tACS (TGCp-tACS), which simulates the natural interaction between theta and gamma oscillations that occurs during cognitive control in the brain. The aim of this study was to improve WM in healthy young adults with TGCp-tACS, focusing on both behavioral and neurophysiological outcomes. Thirty-one participants completed five WM tasks under both sham and verum stimulation conditions. Electroencephalography (EEG) recordings before and after stimulation showed that TGCp-tACS increased power spectral density (PSD) in the high-gamma region at the stimulation site, while PSD decreased in the theta and delta regions throughout the cortex. From a behavioral perspective, although no significant changes were observed in most tasks, there was a significant improvement in accuracy in the 14-item Sternberg task, indicating an improvement in phonological WM. In conclusion, TGCp-tACS has the potential to promote and improve the phonological component of WM. To fully realize the cognitive benefits, further research is needed to refine the stimulation parameters and account for individual differences, such as baseline cognitive status and hormonal factors.
- Klíčová slova
- Electroencephalography (EEG), Power spectral density (PSD), Theta-gamma peak-coupled transcranial alternating current stimulation, Transcranial alternating current stimulation (tACS), Working memory (WM),
- MeSH
- chování fyziologie MeSH
- dospělí MeSH
- elektrická stimulace MeSH
- elektroencefalografie MeSH
- gama rytmus EEG fyziologie MeSH
- krátkodobá paměť * fyziologie MeSH
- lidé MeSH
- mladý dospělý MeSH
- přímá transkraniální stimulace mozku * metody MeSH
- theta rytmus EEG fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Hypokinetic dysarthria (HD) is a common motor speech symptom of Parkinson's disease (PD) which does not respond well to PD treatments. We investigated short-term effects of transcranial direct current stimulation (tDCS) on HD in PD using acoustic analysis of speech. Based on our previous studies we focused on stimulation of the right superior temporal gyrus (STG) - an auditory feedback area. METHODS: In 14 PD patients with HD, we applied anodal, cathodal and sham tDCS to the right STG using a cross-over design. A protocol consisting of speech tasks was performed prior to and immediately after each stimulation session. Linear mixed models were used for the evaluation of the effects of each stimulation condition on the relative change of acoustic parameters. We also performed a simulation of the mean electric field induced by tDCS. RESULTS: Linear mixed model showed a statistically significant effect of the stimulation condition on the relative change of median duration of silences longer than 50 ms (p = 0.015). The relative change after the anodal stimulation (mean = -5.9) was significantly lower as compared to the relative change after the sham stimulation (mean = 12.8), p = 0.014. We also found a correlation between the mean electric field magnitude in the right STG and improvement of articulation precision after anodal tDCS (R = 0.637; p = 0.019). CONCLUSIONS: The exploratory study showed that anodal tDCS applied over the auditory feedback area may lead to shorter pauses in a speech of PD patients.
- Klíčová slova
- Acoustic analysis, Hypokinetic dysarthria, Parkinson’s disease, Superior temporal gyrus, Transcranial electric stimulation,
- MeSH
- dysartrie etiologie terapie patofyziologie MeSH
- klinické křížové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- Parkinsonova nemoc * terapie komplikace patofyziologie MeSH
- pilotní projekty MeSH
- přímá transkraniální stimulace mozku * MeSH
- řeč fyziologie MeSH
- senioři MeSH
- spánkový lalok patofyziologie MeSH
- výsledek terapie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation method that, through its manipulation of endogenous oscillations, can affect cognition in healthy adults. Given the fact that both endogenous oscillations and cognition are impaired in various psychiatric diagnoses, tACS might represent a suitable intervention. We conducted a search of Pubmed and Web of Science databases and reviewed 27 studies where tACS is used in psychiatric diagnoses and cognition change is evaluated. TACS is a safe and well-tolerated intervention method, suitable for multiple-sessions protocols. It can be administered at home, individualized according to the patient''s anatomical and functional characteristics, or used as a marker of disease progression. The results are varying across diagnoses and applied protocols, with some protocols showing a long-term effect. However, the overall number of studies is small with a great variety of diagnoses and tACS parameters, such as electrode montage or used frequency. Precise mechanisms of tACS interaction with pathophysiological processes are only partially described and need further research. Currently, tACS seems to be a feasible method to alleviate cognitive impairment in psychiatric patients; however, a more robust confirmation of efficacy of potential protocols is needed to introduce it into clinical practise.
- Klíčová slova
- ADHD, COVID-19, Cognitive impairment, Dementia, Depression, Non-invasive brain stimulation (NIBS), OCD, Psychiatry, SUD, Schizophrenia, Transcranial alternating current stimulation (tACS),
- MeSH
- duševní poruchy * terapie patofyziologie MeSH
- kognitivní dysfunkce * patofyziologie etiologie terapie MeSH
- lidé MeSH
- přímá transkraniální stimulace mozku * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Recently, transcranial electrical stimulation (tES) has gained increasing popularity among researchers, especially for recovery and improvement, but interpretation of these results is difficult due to variations in study methods and outcome measurements. The main goal of this study was to better understand the postural and balance indicators affected by cerebellar tES, as the cerebellum is the main brain region responsible for controlling balance. For this systematic literature review, three databases were searched for articles where the cerebellum was stimulated by any type of tES in either healthy participants or those with neurologic disorders. Postural, dynamic, and/or static stability measurements were recorded, and risk of bias was assessed on the PEDro scale. A total of 21 studies were included in the analysis. 17 studies reported improvements after application of tES. 14 studies stimulated the cerebellum unilaterally and 15 used this modality for 20 min. Moreover, all studies exclusively used transcranial direct current as the type of stimulation. Evaluation of PEDro results showed that studies included in the analysis utilized good methodology. Although there were some inconsistencies in study results, overall, it was demonstrated that tES can improve balance and postural index under both healthy and neurological conditions. Further research of bilateral cerebellar stimulation or the use of transcranial alternating current stimulation, transcranial random noise stimulation, and transcranial pulsed current stimulation is needed for a more comprehensive assessment of the potential positive effects of cerebellar tES on the balance system.
- Klíčová slova
- Cerebellum, Postural stability, Review, Transcranial electrical stimulation,
- MeSH
- lidé MeSH
- mozeček * fyziologie MeSH
- postura těla fyziologie MeSH
- posturální rovnováha * fyziologie MeSH
- přímá transkraniální stimulace mozku * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- systematický přehled MeSH
The study aimed to assess the efficacy of transcranial direct current stimulation (tDCS) in the treatment of neuropsychiatric (NP) symptoms of the post-acute sequelae of SARS-CoV-2 infection (PASC), known as the long COVID. A double-blind, randomized, sham-controlled study compared the efficacy and safety of prefrontal cortex active tDCS to sham-tDCS in treating NP-PASC. Patients diagnosed with NP-PASC, with a Fatigue Impact Scale (FIS) score ≥ 40, were eligible for the study. Twenty tDCS sessions were administered within four weeks, with continuous, end-of-treatment, and follow-up measurements. The primary outcome was a change in the FIS at the end-of-treatment, analyzed in the intention-to-treat population. Data from 33 patients assigned to active (n = 16) or sham-tDCS (n = 17) were analyzed. After the treatment, a decrease in the FIS score was more pronounced in the sham than in the active group, yet the intergroup difference was insignificant (11.7 [95% CI -11.1 to 34.5], p = 0.6). Furthermore, no significant intergroup differences were observed regarding anxiety, depression, quality of life, and cognitive performance. The small cohort sample, differences in baseline FIS scores between groups (non-stratified randomization), or chosen stimulation parameters may have influenced our findings. However, it might also be possible that the expected mechanism of action of tDCS is insufficient to treat these conditions.
- MeSH
- COVID-19 * terapie MeSH
- dvojitá slepá metoda MeSH
- kvalita života MeSH
- lidé MeSH
- postakutní syndrom COVID-19 MeSH
- prefrontální mozková kůra fyziologie MeSH
- přímá transkraniální stimulace mozku * MeSH
- SARS-CoV-2 MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
Transcranial direct current stimulation combined with cognitive training (tDCS-cog) represents a promising approach to combat cognitive decline among healthy older adults and patients with mild cognitive impairment (MCI). In this 5-day-long double-blinded randomized trial, we investigated the impact of intensified tDCS-cog protocol involving two trains of stimulation per day on working memory (WM) enhancement in 35 amnestic and multidomain amnestic MCI patients. Specifically, we focused to improve WM tasks relying on top-down attentional control and hypothesized that intensified tDCS would enhance performance of visual object matching task (VOMT) immediately after the stimulation regimen and at a 1-month follow-up. Secondarily, we explored whether the stimulation would augment online visual working memory training. Using fMRI, we aimed to elucidate the neural mechanisms underlying the intervention effects by analyzing BOLD activations during VOMT. Our main finding revealed no superior after-effects of tDCS-cog over the sham on VOMT among individuals with MCI as indicated by insignificant immediate and long-lasting after-effects. Additionally, the tDCS-cog did not enhance online training as predicted. The fMRI analysis revealed brain activity alterations in right insula that may be linked to tDCS-cog intervention. In the study we discuss the insignificant behavioral results in the context of the current evidence in tDCS parameter space and opening the discussion of possible interference between trained cognitive tasks.
- MeSH
- dorsolaterální prefrontální kortex MeSH
- dvojitá slepá metoda MeSH
- kognitivní dysfunkce * terapie MeSH
- krátkodobá paměť fyziologie MeSH
- lidé MeSH
- mozek diagnostické zobrazování MeSH
- prefrontální mozková kůra fyziologie MeSH
- přímá transkraniální stimulace mozku * metody MeSH
- senioři MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
Inhibitory control plays a role in the behavior selection and detection of conflicts. Defects in inhibitory control are an integral part of many neuropsychiatric disorders and the possibilities of influencing it are the subject of active study. Studies have shown and confirmed the activation of the dorsolateral prefrontal cortex (DLPFC) during the Stroop task and other tests involving response inhibition. Non-invasive brain stimulation is an emerging and actively developing group of methods used in cognitive research. In the present study, we used non-invasive, painless, and delicate transcranial direct stimulation (tDCS) for the study of inhibitory control, and to explore the effect of impulsivity on response inhibition ability in young healthy participants. We conducted a cross-over study with cross-hemispheric application of 2 mA tDCS with electrodes placed on the right - cathode, and left - anode - DLPFC. Participants performed a classic Stroop test before and after stimulation. Impulsivity was measured via the personal impulsiveness questionnaire. There was no significant difference in interference score alteration between active and sham stimulations, anodal and sham tDCS both induced slight improvement in Stroop test results. Individual impulsivity in healthy participants showed no influence on their results. Our study adds to the picture and helps to deepen knowledge about the impact of different stimulation parameters on cognitive functions.
Purpose: This study aimed to investigate the acute effects of tDCS combined with caffeine intake on training volume and pain perception in the bench press in resistance-trained males. The correlation between training volume and pain perception was also assessed in all interventions. Methods: Sixteen healthy males (age = 25.2 ± 4.7 years, body mass = 82.8 ± 9.1 kg, and height = 178.3 ± 5.7 cm), advanced in RT, were randomized and counterbalanced for the following experimental conditions: Sham tDCS with placebo intake (Sham+Pla), Sham tDCS with caffeine intake (Sham+Caff), anodal tDCS with placebo intake (a-tDCS+Pla), and anodal tDCS with caffeine intake (a-tDCS+Caff). The caffeine or placebo ingestion (both with 5 mg.kg-1) occurred 40 minutes before the tDCS sessions. The tDCS was applied over the left DLPFC for 20 minutes, with a 2 mA current intensity. After the tDCS sessions, participants performed the bench press with an 80% of 1RM load, where training volume and pain perception were measured. Results: Training volume was higher in the 1st and 2nd sets in both a-tDCS+Caff and Sham+Caff conditions, compared to the Sham+Pla condition (P < .05). Both a-tDCS+Caff and a-tDCS+Pla showed an increased pain perception during the third set compared to the first set. Also, no correlation was found between the number of repetitions and pain perception in any condition (P > .05). Conclusion: This research revealed that caffeine intake alone could be used as an ergogenic aid during resistance training programs in resistance-trained males.
- Klíčová slova
- bench press, caffeine, pain, performance, tDCS,
- MeSH
- dospělí MeSH
- dvojitá slepá metoda MeSH
- klinické křížové studie MeSH
- kofein farmakologie MeSH
- lidé MeSH
- mladý dospělý MeSH
- odporový trénink * MeSH
- percepce bolesti MeSH
- přímá transkraniální stimulace mozku * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- kofein MeSH