Nejvíce citovaný článek - PubMed ID 1736359
The relationship between working memory (WM) and neuronal oscillations can be studied in detail using brain stimulation techniques, which provide a method for modulating these oscillations and thus influencing WM. The endogenous coupling between the amplitude of gamma oscillations and the phase of theta oscillations is crucial for cognitive control. Theta/gamma peak-coupled transcranial alternating current stimulation (TGCp-tACS) can modulate this coupling and thus influence WM performance. This study investigated the effects of TGCp-tACS on WM in older adults and compared their responses with those of younger participants from our previous work who underwent the same experimental design. Twenty-eight older subjects underwent both TGCp-tACS and sham stimulation sessions at least 72 h apart. Resting-state electroencephalography (EEG) was recorded before and after the interventions, and a WM task battery with five different WM tasks was performed during the interventions to assess various WM components. Outcomes measured included WM task performance (e.g., accuracy, reaction time (RT)) and changes in power spectral density (PSD) in different frequency bands. TGCp-tACS significantly decreased accuracy and RT on the 10- and 14-point Sternberg tasks and increased RT on the Digit Symbol Substitution Test in older adults. In contrast, younger participants showed a significant increase in accuracy only on the 14-item Sternberg task. Electrophysiological analysis revealed a decrease in delta and theta PSD and an increase in high gamma PSD in both younger and older participants after verum stimulation. In conclusion, theta-gamma coupling is essential for WM and modulation of this coupling affects WM performance. The effects of TGCp-tACS on WM vary with age due to natural brain changes. To better support older adults, the study suggests several strategies to improve cognitive function, including: Adjusting stimulation parameters, applying stimulation to two sites, conducting multiple sessions, and using brain imaging techniques for precise targeting.
- Klíčová slova
- Electroencephalography (EEG), Power spectral density (PSD), Theta-gamma coupling, Transcranial alternating current stimulation (tACS), Working memory (WM),
- MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- gama rytmus EEG * fyziologie MeSH
- krátkodobá paměť * fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- přímá transkraniální stimulace mozku * MeSH
- reakční čas fyziologie MeSH
- senioři MeSH
- stárnutí fyziologie MeSH
- theta rytmus EEG * fyziologie MeSH
- zdraví MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Transcranial direct current stimulation combined with cognitive training (tDCS-cog) represents a promising approach to combat cognitive decline among healthy older adults and patients with mild cognitive impairment (MCI). In this 5-day-long double-blinded randomized trial, we investigated the impact of intensified tDCS-cog protocol involving two trains of stimulation per day on working memory (WM) enhancement in 35 amnestic and multidomain amnestic MCI patients. Specifically, we focused to improve WM tasks relying on top-down attentional control and hypothesized that intensified tDCS would enhance performance of visual object matching task (VOMT) immediately after the stimulation regimen and at a 1-month follow-up. Secondarily, we explored whether the stimulation would augment online visual working memory training. Using fMRI, we aimed to elucidate the neural mechanisms underlying the intervention effects by analyzing BOLD activations during VOMT. Our main finding revealed no superior after-effects of tDCS-cog over the sham on VOMT among individuals with MCI as indicated by insignificant immediate and long-lasting after-effects. Additionally, the tDCS-cog did not enhance online training as predicted. The fMRI analysis revealed brain activity alterations in right insula that may be linked to tDCS-cog intervention. In the study we discuss the insignificant behavioral results in the context of the current evidence in tDCS parameter space and opening the discussion of possible interference between trained cognitive tasks.
- MeSH
- dorsolaterální prefrontální kortex MeSH
- dvojitá slepá metoda MeSH
- kognitivní dysfunkce * terapie MeSH
- krátkodobá paměť fyziologie MeSH
- lidé MeSH
- mozek diagnostické zobrazování MeSH
- prefrontální mozková kůra fyziologie MeSH
- přímá transkraniální stimulace mozku * metody MeSH
- senioři MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
Working memory (WM) is the active retention and processing of information over a few seconds and is considered an essential component of cognitive function. The reduced WM capacity is a common feature in many diseases, such as schizophrenia, attention deficit hyperactivity disorder (ADHD), mild cognitive impairment (MCI), and Alzheimer's disease (AD). The theta-gamma neural code is an essential component of memory representations in the multi-item WM. A large body of studies have examined the association between cross-frequency coupling (CFC) across the cerebral cortices and WM performance; electrophysiological data together with the behavioral results showed the associations between CFC and WM performance. The oscillatory entrainment (sensory, non-invasive electrical/magnetic, and invasive electrical) remains the key method to investigate the causal relationship between CFC and WM. The frequency-tuned non-invasive brain stimulation is a promising way to improve WM performance in healthy and non-healthy patients with cognitive impairment. The WM performance is sensitive to the phase and rhythm of externally applied stimulations. CFC-transcranial-alternating current stimulation (CFC-tACS) is a recent approach in neuroscience that could alter cognitive outcomes. The studies that investigated (1) the association between CFC and WM and (2) the brain stimulation protocols that enhanced WM through modulating CFC by the means of the non-invasive brain stimulation techniques have been included in this review. In principle, this review can guide the researchers to identify the most prominent form of CFC associated with WM processing (e.g., theta/gamma phase-amplitude coupling), and to define the previously published studies that manipulate endogenous CFC externally to improve WM. This in turn will pave the path for future studies aimed at investigating the CFC-tACS effect on WM. The CFC-tACS protocols need to be thoroughly studied before they can be considered as therapeutic tools in patients with WM deficits.
- Klíčová slova
- cross-frequency coupling, neuronal oscillations, phase-amplitude coupling, theta-gamma coupling, working memory,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Enhancing cognitive functions through noninvasive brain stimulation is of enormous public interest, particularly for the aging population in whom processes such as working memory are known to decline. In a randomized double-blind crossover study, we investigated the acute behavioral and neural aftereffects of bifrontal and frontoparietal transcranial direct current stimulation (tDCS) combined with visual working memory (VWM) training on 25 highly educated older adults. Resting-state functional connectivity (rs-FC) analysis was performed prior to and after each stimulation session with a focus on the frontoparietal control network (FPCN). The bifrontal montage with anode over the left dorsolateral prefrontal cortex enhanced VWM accuracy as compared to the sham stimulation. With the rs-FC within the FPCN, we observed significant stimulation × time interaction using bifrontal tDCS. We found no cognitive aftereffects of the frontoparietal tDCS compared to sham stimulation. Our study shows that a single bifrontal tDCS combined with cognitive training may enhance VWM performance and rs-FC within the relevant brain network even in highly educated older adults.
- MeSH
- čelní lalok MeSH
- dvojitá slepá metoda MeSH
- klinické křížové studie MeSH
- kognice * MeSH
- kognitivně behaviorální terapie metody MeSH
- krátkodobá paměť MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- neuropsychologické testy MeSH
- prefrontální mozková kůra MeSH
- přímá transkraniální stimulace mozku metody MeSH
- psychomotorický výkon MeSH
- senioři MeSH
- stupeň vzdělání MeSH
- temenní lalok MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH