Nejvíce citovaný článek - PubMed ID 20633386
Working memory (WM) is essential for the temporary storage and processing of information required for complex cognitive tasks and relies on neuronal theta and gamma oscillations. Given the limited capacity of WM, researchers have investigated various methods to improve it, including transcranial alternating current stimulation (tACS), which modulates brain activity at specific frequencies. One particularly promising approach is theta-gamma peak-coupled-tACS (TGCp-tACS), which simulates the natural interaction between theta and gamma oscillations that occurs during cognitive control in the brain. The aim of this study was to improve WM in healthy young adults with TGCp-tACS, focusing on both behavioral and neurophysiological outcomes. Thirty-one participants completed five WM tasks under both sham and verum stimulation conditions. Electroencephalography (EEG) recordings before and after stimulation showed that TGCp-tACS increased power spectral density (PSD) in the high-gamma region at the stimulation site, while PSD decreased in the theta and delta regions throughout the cortex. From a behavioral perspective, although no significant changes were observed in most tasks, there was a significant improvement in accuracy in the 14-item Sternberg task, indicating an improvement in phonological WM. In conclusion, TGCp-tACS has the potential to promote and improve the phonological component of WM. To fully realize the cognitive benefits, further research is needed to refine the stimulation parameters and account for individual differences, such as baseline cognitive status and hormonal factors.
- Klíčová slova
- Electroencephalography (EEG), Power spectral density (PSD), Theta-gamma peak-coupled transcranial alternating current stimulation, Transcranial alternating current stimulation (tACS), Working memory (WM),
- MeSH
- chování fyziologie MeSH
- dospělí MeSH
- elektrická stimulace MeSH
- elektroencefalografie MeSH
- gama rytmus EEG fyziologie MeSH
- krátkodobá paměť * fyziologie MeSH
- lidé MeSH
- mladý dospělý MeSH
- přímá transkraniální stimulace mozku * metody MeSH
- theta rytmus EEG fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Hypokinetic dysarthria (HD) is a common motor speech symptom of Parkinson's disease (PD) which does not respond well to PD treatments. We investigated short-term effects of transcranial direct current stimulation (tDCS) on HD in PD using acoustic analysis of speech. Based on our previous studies we focused on stimulation of the right superior temporal gyrus (STG) - an auditory feedback area. METHODS: In 14 PD patients with HD, we applied anodal, cathodal and sham tDCS to the right STG using a cross-over design. A protocol consisting of speech tasks was performed prior to and immediately after each stimulation session. Linear mixed models were used for the evaluation of the effects of each stimulation condition on the relative change of acoustic parameters. We also performed a simulation of the mean electric field induced by tDCS. RESULTS: Linear mixed model showed a statistically significant effect of the stimulation condition on the relative change of median duration of silences longer than 50 ms (p = 0.015). The relative change after the anodal stimulation (mean = -5.9) was significantly lower as compared to the relative change after the sham stimulation (mean = 12.8), p = 0.014. We also found a correlation between the mean electric field magnitude in the right STG and improvement of articulation precision after anodal tDCS (R = 0.637; p = 0.019). CONCLUSIONS: The exploratory study showed that anodal tDCS applied over the auditory feedback area may lead to shorter pauses in a speech of PD patients.
- Klíčová slova
- Acoustic analysis, Hypokinetic dysarthria, Parkinson’s disease, Superior temporal gyrus, Transcranial electric stimulation,
- MeSH
- dysartrie etiologie terapie patofyziologie MeSH
- klinické křížové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- Parkinsonova nemoc * terapie komplikace patofyziologie MeSH
- pilotní projekty MeSH
- přímá transkraniální stimulace mozku * MeSH
- řeč fyziologie MeSH
- senioři MeSH
- spánkový lalok patofyziologie MeSH
- výsledek terapie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Inhibitory control plays a role in the behavior selection and detection of conflicts. Defects in inhibitory control are an integral part of many neuropsychiatric disorders and the possibilities of influencing it are the subject of active study. Studies have shown and confirmed the activation of the dorsolateral prefrontal cortex (DLPFC) during the Stroop task and other tests involving response inhibition. Non-invasive brain stimulation is an emerging and actively developing group of methods used in cognitive research. In the present study, we used non-invasive, painless, and delicate transcranial direct stimulation (tDCS) for the study of inhibitory control, and to explore the effect of impulsivity on response inhibition ability in young healthy participants. We conducted a cross-over study with cross-hemispheric application of 2 mA tDCS with electrodes placed on the right - cathode, and left - anode - DLPFC. Participants performed a classic Stroop test before and after stimulation. Impulsivity was measured via the personal impulsiveness questionnaire. There was no significant difference in interference score alteration between active and sham stimulations, anodal and sham tDCS both induced slight improvement in Stroop test results. Individual impulsivity in healthy participants showed no influence on their results. Our study adds to the picture and helps to deepen knowledge about the impact of different stimulation parameters on cognitive functions.
Transcranial direct current stimulation (tDCS) is a non-invasive neurostimulation method that utilizes the effect of low-current on brain tissue. In recent years, the effect of transcranial direct current stimulation has been investigated as a therapeutic modality in various neuropsychiatric indications, one of them being schizophrenia. This article aims to provide an overview of the potential application and effect of tDCS in treating patients with schizophrenia. A literature search was performed using the PubMed, Web of Science, and Google Scholar databases for relevant research published from any date until December 2021. Eligible studies included those that used randomized controlled parallel-group design and focused on the use of transcranial direct current stimulation for the treatment of positive, negative, or cognitive symptoms of schizophrenia. Studies were divided into groups based on the focus of research and an overview is provided in separate sections and tables in the article. The original database search yielded 705 results out of which 27 randomized controlled trials met the eligibility criteria and were selected and used for the purpose of this article. In a review of the selected trials, transcranial direct current stimulation is a safe and well-tolerated method that appears to have the potential as an effective modality for the treatment of positive and negative schizophrenic symptoms and offers promising results in influencing cognition. However, ongoing research is needed to confirm these conclusions and to further specify distinct application parameters.
- Klíčová slova
- direct current stimulation, neurostimulation, review, schizophrenia, schizophrenic, tDCS,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Studies examining event-related potentials (ERP) in patients affected by attention deficit/hyperactivity disorder (ADHD) have found considerable evidence of reduced target P300 amplitude across different perceptual modalities. P300 amplitude has been related to attention-driven context comparison and resource allocation processes. Altered P300 amplitude in ADHD can be reasonably assumed to be related to ADHD typical cognitive performance deficits. Transcranial alternating current stimulation (tACS) can increase the amplitude of endogenous brain oscillations. Because ERP components can be viewed as event-related oscillations (EROs), with P300 translating into the delta (0-4 Hz) and theta (4-8 Hz) frequency range, an increase of delta and theta ERO amplitudes by tACS should result in an increase of P300 amplitudes in ADHD patients. In this pilot study, 18 adult ADHD patients (7 female) performed three consecutive blocks of a visual oddball task while the electroencephalogram (EEG) was recorded. Patients received either 20 min of tACS or sham stimulation at a stimulation intensity of 1 mA. Individual stimulation frequency was determined using a time-frequency decomposition of the P300. Our preliminary results demonstrate a significant increase in P300 amplitude in the stimulation group which was accompanied by a decrease in omission errors pre-to-post tACS. However, studies including larger sample sizes are advised.
- Klíčová slova
- Attention deficit/hyperactivity disorder, P300, Transcranial alternating current stimulation,
- MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- evokované potenciály fyziologie MeSH
- hyperkinetická porucha patofyziologie MeSH
- kognitivní evokované potenciály P300 * MeSH
- lidé MeSH
- mozek fyziologie MeSH
- pilotní projekty MeSH
- přímá transkraniální stimulace mozku metody MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH