Most cited article - PubMed ID 32312325
Monitoring Leishmania infection and exposure to Phlebotomus perniciosus using minimal and non-invasive canine samples
Compounds in sand fly saliva elicit specific immune responses that may play a role in the establishment of canine Leishmania infection. Although canine antibodies to anti-sand fly saliva antigens have been extensively studied, little is known about cellular immune responses against Phlebotomus perniciosus salivary proteins. This study aimed to explore humoral and T-cell-mediated immunity against P. perniciosus salivary proteins in dogs (n = 85) from Mallorca (Spain), a leishmaniosis-endemic area, and find correlations with demographic (age, sex, and breed) and parasite-specific immunological parameters. Anti-sand fly saliva IgG was examined using a P. perniciosus whole salivary gland homogenate (SGH) ELISA and recombinant salivary protein rSP03B ELISA. Interferon gamma (IFN-γ) release whole blood assays with L. infantum soluble antigen (LSA), SGH, and rSP03B were also performed. Positive correlations were found between IgG levels in the SGH and rSP03B tests and between concentrations of SGH IFN-γ and rSP03B IFN-γ. While concentrations of SGH IFN-γ and rSP03B IFN-γ were low and produced only by a minority of dogs (less than 20%), high levels and frequencies of LSA IFN-γ as well as anti-saliva IgG for SGH and rSP03B were detected in a majority of dogs (61% and 75%, respectively). LSA IFN-γ levels were positively correlated with age and Leishmania-specific antibodies. In conclusion, dogs from a leishmaniosis-endemic area presented high humoral immunity against P. perniciosus salivary proteins, but their cellular immunity to these proteins was low and less frequent.
- Keywords
- Leishmania infantum, anti-saliva antibodies, canine, recombinant salivary proteins, specific P. perniciosus saliva IFN-γ,
- MeSH
- Immunity, Cellular * MeSH
- Endemic Diseases MeSH
- Insect Proteins * immunology MeSH
- Immunity, Humoral * MeSH
- Immunoglobulin G blood immunology MeSH
- Interferon-gamma MeSH
- Leishmaniasis * immunology veterinary epidemiology MeSH
- Dog Diseases * immunology parasitology epidemiology MeSH
- Phlebotomus * immunology MeSH
- Dogs MeSH
- Salivary Proteins and Peptides * immunology MeSH
- T-Lymphocytes * immunology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Dogs MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Spain epidemiology MeSH
- Names of Substances
- Insect Proteins * MeSH
- Immunoglobulin G MeSH
- Interferon-gamma MeSH
- Salivary Proteins and Peptides * MeSH
Phlebotomus argentipes is a predominant vector of Leishmania donovani, the protozoan parasite causing visceral leishmaniasis in the Indian subcontinent. In hosts bitten by P. argentipes, sand fly saliva elicits the production of specific anti-salivary protein antibodies. Here, we have utilised these antibodies as markers of human exposure to P. argentipes in a visceral leishmaniasis endemic area in Pabna district, Bangladesh. The use of whole salivary gland homogenate as an antigen to detect these antibodies has several limitations, therefore it is being superseded by the use of specific recombinant salivary proteins. We have identified three major P. argentipes salivary antigenic proteins recognised by sera of bitten humans, expressed them in a recombinant form (rPagSP04, rPagSP05 and rPagSP06) and tested their applicability in ELISA and immunoblot. One of them, PpSP32-like protein rPagSP06, was identified as the most promising antigen, showing highest resemblance and correlation with the IgG response to P. argentipes salivary gland homogenate. Furthermore, we have validated the applicability of rPagSP06 in a large cohort of 585 individuals and obtained a high correlation coefficient for anti-rPagSP06 and anti-P. argentipes saliva IgG responses. The anti-rPagSP06 and anti-P. argentipes salivary gland homogenate IgG responses followed a similar right-skewed distribution. This is the first report of screening human sera for anti-P. argentipes saliva antibodies using recombinant salivary protein. The rPagSP06 was proven to be a valid antigen for screening human sera for exposure to P. argentipes bites in a visceral leishmaniasis endemic area.
- Keywords
- Bangladesh, IgG antibodies, Leishmania donovani, Marker of exposure, Phlebotomus argentipes, Salivary glands,
- MeSH
- Insect Proteins * immunology MeSH
- Bites and Stings epidemiology MeSH
- Leishmania donovani MeSH
- Humans MeSH
- Phlebotomus * MeSH
- Salivary Proteins and Peptides * immunology MeSH
- Saliva MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Bangladesh epidemiology MeSH
- Names of Substances
- Insect Proteins * MeSH
- Salivary Proteins and Peptides * MeSH
Phlebotomus perniciosus (Diptera: Phlebotominae) is a medically and veterinary important insect vector. It transmits the unicellular parasite Leishmania infantum that multiplies intracellularly in macrophages causing life-threatening visceral diseases. Leishmania establishment in the vertebrate host is substantially influenced by immunomodulatory properties of vector saliva that are obligatorily co-injected into the feeding site. The repertoire of P. perniciosus salivary molecules has already been revealed and, subsequently, several salivary proteins have been expressed. However, their immunogenic properties have never been studied. In our study, we tested three P. perniciosus recombinant salivary proteins-an apyrase rSP01 and yellow-related proteins rSP03 and rSP03B-and showed their anti-inflammatory nature on the murine bone-marrow derived macrophages. Even in the presence of pro-inflammatory stimuli (IFN-γ and bacterial lipopolysaccharide, LPS), all three recombinant proteins inhibited nitric oxide production. Moreover, rSP03 seems to have a very strong anti-inflammatory effect since it enhanced arginase activity, increased the production of IL-10, and inhibited the production of TNF-α even in macrophages stimulated with IFN-γ and LPS. These results suggest that P. perniciosus apyrase and yellow-related proteins may serve as enhancing factors in sand fly saliva, facilitating the development of Leishmania infection along with their anti-haemostatic properties. Additionally, rSP03 and rSP03B did not elicit the delayed-type hypersensitivity response in mice pre-exposed to P. perniciosus bites (measured as visible skin reaction). The results of our study may help to understand the potential function of recombinant's native counterparts and their role in Leishmania transmission and establishment within the host.
- Keywords
- Phlebotomus, apyrase, immunogenicity, macrophage polarization, sand fly saliva, yellow-related proteins,
- MeSH
- Anti-Inflammatory Agents MeSH
- Phenotype MeSH
- Macrophages MeSH
- Mice MeSH
- Phlebotomus * MeSH
- Dogs MeSH
- Recombinant Proteins MeSH
- Salivary Proteins and Peptides MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Dogs MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Inflammatory Agents MeSH
- Recombinant Proteins MeSH
- Salivary Proteins and Peptides MeSH