Most cited article - PubMed ID 32343582
SWATH-MS Analysis of FFPE Tissues Identifies Stathmin as a Potential Marker of Endometrial Cancer in Patients Exposed to Tamoxifen
NF-κB pathway is involved in inflammation; however, recent data shows its role also in cancer development and progression, including metastasis. To understand the role of NF-κB interactome dynamics in cancer, we study the complexity of breast cancer interactome in luminal A breast cancer model and its rearrangement associated with NF-κB modulation. Liquid chromatography-mass spectrometry measurement of 160 size-exclusion chromatography fractions identifies 5460 protein groups. Seven thousand five hundred sixty eight interactions among these proteins have been reconstructed by PrInCE algorithm, of which 2564 have been validated in independent datasets. NF-κB modulation leads to rearrangement of protein complexes involved in NF-κB signaling and immune response, cell cycle regulation, and DNA replication. Central NF-κB transcription regulator RELA co-elutes with interactors of NF-κB activator PRMT5, and these complexes are confirmed by AlphaPulldown prediction. A complementary immunoprecipitation experiment recapitulates RELA interactions with other NF-κB factors, associating NF-κB inhibition with lower binding of NF-κB activators to RELA. This study describes a network of pro-tumorigenic protein interactions and their rearrangement upon NF-κB inhibition with potential therapeutic implications in tumors with high NF-κB activity.
- Keywords
- AlphaPullDown, NF-κB, RELA, breast cancer, interaction, protein complexes, protein correlation profiling, proteomics,
- MeSH
- Carcinogenesis metabolism MeSH
- Humans MeSH
- Protein Interaction Mapping MeSH
- Protein Interaction Maps * MeSH
- Cell Line, Tumor MeSH
- Breast Neoplasms * metabolism pathology MeSH
- NF-kappa B * metabolism MeSH
- Protein-Arginine N-Methyltransferases metabolism MeSH
- Signal Transduction MeSH
- Transcription Factor RelA * metabolism MeSH
- Protein Binding MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- NF-kappa B * MeSH
- Protein-Arginine N-Methyltransferases MeSH
- RELA protein, human MeSH Browser
- Transcription Factor RelA * MeSH
Renal cell carcinoma (RCC) represents about 2-3% of all cancers with over 400,000 new cases per year. Sunitinib, a vascular endothelial growth factor tyrosine kinase receptor inhibitor, has been used mainly for first-line treatment of metastatic clear-cell RCC with good or intermediate prognosis. However, about one-third of metastatic RCC patients do not respond to sunitinib, leading to disease progression. Here, we aim to find and characterize proteins associated with poor sunitinib response in a pilot proteomics study. Sixteen RCC tumors from patients responding (8) vs. non-responding (8) to sunitinib 3 months after treatment initiation were analyzed using data-independent acquisition mass spectrometry, together with their adjacent non-cancerous tissues. Proteomics analysis quantified 1996 protein groups (FDR = 0.01) and revealed 27 proteins deregulated between tumors non-responding vs. responding to sunitinib, representing a pattern of deregulated proteins potentially contributing to sunitinib resistance. Gene set enrichment analysis showed an up-regulation of epithelial-to-mesenchymal transition with transgelin as one of the most significantly abundant proteins. Transgelin expression was silenced by CRISPR/Cas9 and RNA interference, and the cells with reduced transgelin level exhibited significantly slower proliferation. Our data indicate that transgelin is an essential protein supporting RCC cell proliferation, which could contribute to intrinsic sunitinib resistance.
- Keywords
- DIA-MS, mccRCC, resistance, sunitinib, transgelin,
- Publication type
- Journal Article MeSH
Hydrogen can serve as an electron donor for chemolithotrophic acidophiles, especially in the deep terrestrial subsurface and geothermal ecosystems. Nevertheless, the current knowledge of hydrogen utilization by mesophilic acidophiles is minimal. A multi-omics analysis was applied on Acidithiobacillus ferrooxidans growing on hydrogen, and a respiratory model was proposed. In the model, [NiFe] hydrogenases oxidize hydrogen to two protons and two electrons. The electrons are used to reduce membrane-soluble ubiquinone to ubiquinol. Genetically associated iron-sulfur proteins mediate electron relay from the hydrogenases to the ubiquinone pool. Under aerobic conditions, reduced ubiquinol transfers electrons to either cytochrome aa 3 oxidase via cytochrome bc 1 complex and cytochrome c 4 or the alternate directly to cytochrome bd oxidase, resulting in proton efflux and reduction of oxygen. Under anaerobic conditions, reduced ubiquinol transfers electrons to outer membrane cytochrome c (ferrireductase) via cytochrome bc 1 complex and a cascade of electron transporters (cytochrome c 4, cytochrome c 552, rusticyanin, and high potential iron-sulfur protein), resulting in proton efflux and reduction of ferric iron. The proton gradient generated by hydrogen oxidation maintains the membrane potential and allows the generation of ATP and NADH. These results further clarify the role of extremophiles in biogeochemical processes and their impact on the composition of the deep terrestrial subsurface.
- Keywords
- Acidithiobacillus, extremophiles, ferric iron reduction, hydrogen metabolism, multi-omics, oxygen reduction,
- Publication type
- Journal Article MeSH