Nejvíce citovaný článek - PubMed ID 32394023
The role of essential fatty acids in cystic fibrosis and normalizing effect of fenretinide
Endometriosis, a complex inflammatory disease, affects a significant proportion of women of reproductive age, approximately 10-15%. The disease involves the growth of endometrial glands and stroma outside the uterine cavity, leading to tissue remodeling and fibrosis. Hormonal imbalances, accompanied by local and general inflammation and pain, are key features of endometriosis. Endometriotic lesions are associated with the overproduction of cytokines, metalloproteinases, prostaglandins, reactive oxygen radicals, and extracellular vesicles. Genetic predisposition and cytokine gene polymorphisms have been documented. Macrophages, dendritic cells, mast cells, Th1 in the early phase, Th2 in the late phase, and T regulatory cells play a crucial role in endometriosis. Reduced NK cell function and impaired immune vigilance contribute to endometrial growth. The strong inflammatory condition of the endometrium poses a barrier to the proper implantation of the zygote, contributing to the infertility of these patients. Cytokines from various cell types vary with the severity of the disease. The role of microbiota in endometriosis is still under study. Endometriosis is associated with autoimmunity and ovarian cancer. Hormonal treatments and surgery are commonly used; however, recent interest focuses on anti-inflammatory and immunomodulatory therapies, including cytokine and anti-cytokine antibodies. Modulating the immune response has proven critical; however, more research is needed to optimize treatment for these patients.
- Klíčová slova
- autoimmunity, cancer, cytokines, endometriosis, inflammation, therapy,
- MeSH
- cytokiny metabolismus imunologie MeSH
- endometrióza * imunologie terapie patologie etiologie MeSH
- endometrium imunologie patologie MeSH
- lidé MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cytokiny MeSH
Inflammatory lung diseases (ILDs) represent a global public health crisis characterized by escalating prevalence, significant morbidity, and substantial mortality. In response to the complex immunopathogenic mechanisms driving these conditions, novel pharmacological strategies targeting resolution pathways have emerged throughout the discovery of specialized pro-resolving lipid mediator (SPM; resolvins, maresins, and protectins) dysregulation across the ILD spectra, positioning these endogenous molecules as promising therapeutic candidates for modulating maladaptive inflammation and promoting tissue repair. Over the past decade, this paradigm has catalyzed extensive translational research into SPM-based interventions as precision therapeutics for respiratory inflammation. In asthma, they reduce mucus hypersecretion, bronchial hyperreactivity, and airway inflammation, with prenatal SPM exposure potentially lowering offspring disease risk. In COPD, SPMs attenuate amyloid A-driven inflammation, normalizing cytokine/chemokine imbalances and oxidative stress and mitigating COVID-19-associated cytokine storm, enhancing survival. This review synthesizes SPMs' pharmacotherapeutic mechanisms in ILDs and evaluates current preclinical and clinical evidence.
- Klíčová slova
- COPD, PUFAs, inflammation, pulmonary diseases, specialized pro-resolving lipid mediators,
- MeSH
- chronická obstrukční plicní nemoc farmakoterapie metabolismus MeSH
- COVID-19 metabolismus MeSH
- kyseliny dokosahexaenové terapeutické užití metabolismus MeSH
- lidé MeSH
- plicní nemoci * farmakoterapie metabolismus MeSH
- SARS-CoV-2 MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- kyseliny dokosahexaenové MeSH
Cystic fibrosis (CF) is the most common autosomal recessive genetic disease in Caucasians, affecting more than 100,000 individuals worldwide. It is caused by pathogenic variants in the gene encoding CFTR, an anion channel at the plasma membrane of epithelial and other cells. Many CF pathogenic variants disrupt the biosynthesis and trafficking of CFTR or reduce its ion channel function. The most frequent mutation, loss of a phenylalanine at position 508 (F508del), leads to misfolding, retention in the endoplasmic reticulum, and premature degradation of the protein. The therapeutics available for treating CF lung disease include antibiotics, mucolytics, bronchodilators, physiotherapy, and most recently CFTR modulators. To date, no cure for this life shortening disease has been found. Treatment with the Triple combination drug therapy, TRIKAFTA®, is composed of three drugs: Elexacaftor (VX-445), Tezacaftor (VX-661) and Ivacaftor (VX-770). This therapy, benefits persons with CF, improving their weight, lung function, energy levels (as defined by reduced fatigue), and overall quality of life. We examined the effect of combining LAU-7b oral treatment and Triple therapy combination on lung function in a F508deltm1EUR mouse model that displays lung abnormalities relevant to human CF. We assessed lung function, lung histopathology, protein oxidation, lipid oxidation, and fatty acid and lipid profiles in F508deltm1EUR mice.
- Klíčová slova
- LAU-7b, TRIKAFTA, ceramides, cystic fibrosis, fenretinide (4-HPR), lung physiology, sphingolipids, triple therapy,
- Publikační typ
- časopisecké články MeSH