Nejvíce citovaný článek - PubMed ID 32521246
iEcology: Harnessing Large Online Resources to Generate Ecological Insights
The widespread sharing of information on the Internet has given rise to ecological studies that use data from digital sources including digitized museum records and social media posts. Most of these studies have focused on understanding species occurrences and distributions. In this essay, we argue that data from digital sources also offer many opportunities to study animal behavior including long-term and large-scale comparisons within and between species. Following Nikko Tinbergen's classical roadmap for behavioral investigation, we show how using videos, photos, text, and audio posted on social media and other digital platforms can shed new light on known behaviors, particularly in a changing world, and lead to the discovery of new ones.
- MeSH
- chování zvířat * fyziologie MeSH
- internet MeSH
- sociální média * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Online digital data from media platforms have the potential to complement biodiversity monitoring efforts. We propose a strategy for integrating these data into current biodiversity datasets in light of the Kunming-Montreal Global Biodiversity Framework.
- MeSH
- biodiverzita * MeSH
- zachování přírodních zdrojů * MeSH
- Publikační typ
- časopisecké články MeSH
UNLABELLED: The global COVID-19 pandemic resulted in many jurisdictions implementing orders restricting the movements of people to inhibit virus transmission, with recreational angling often either not permitted or access to fisheries and/or related infrastructure being prevented. Following the lifting of restrictions, initial angler surveys and licence sales suggested increased participation and effort, and altered angler demographics, but with evidence remaining limited. Here, we overcome this evidence gap by identifying temporal changes in angling interest, licence sales, and angling effort in world regions by comparing data in the 'pre-pandemic' (up to and including 2019); 'acute pandemic' (2020) and 'COVID-acclimated' (2021) periods. We then identified how changes can inform the development of more resilient and sustainable recreational fisheries. Interest in angling (measured here as angling-related internet search term volumes) increased substantially in all regions during 2020. Patterns in licence sales revealed marked increases in some countries during 2020 but not in others. Where licence sales increased, this was rarely sustained in 2021; where there were declines, these related to fewer tourist anglers due to movement restrictions. Data from most countries indicated a younger demographic of people who participated in angling in 2020, including in urban areas, but this was not sustained in 2021. These short-lived changes in recreational angling indicate efforts to retain younger anglers could increase overall participation levels, where efforts can target education in appropriate angling practices and create more urban angling opportunities. These efforts would then provide recreational fisheries with greater resilience to cope with future global crises, including facilitating the ability of people to access angling opportunities during periods of high societal stress. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11160-023-09784-5.
- Klíčová slova
- Angler demographics, Angling effort, Angling licence, COVID-19 lockdown, Culturomics,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The ongoing digital revolution in the age of big data is opening new research opportunities. Culturomics and iEcology, two emerging research areas based on the analysis of online data resources, can provide novel scientific insights and inform conservation and management efforts. To date, culturomics and iEcology have been applied primarily in the terrestrial realm. Here, we advocate for expanding such applications to the aquatic realm by providing a brief overview of these new approaches and outlining key areas in which culturomics and iEcology are likely to have the highest impact, including the management of protected areas; fisheries; flagship species identification; detection and distribution of threatened, rare, and alien species; assessment of ecosystem status and anthropogenic impacts; and social impact assessment. When deployed in the right context with awareness of potential biases, culturomics and iEcology are ripe for rapid development as low-cost research approaches based on data available from digital sources, with increasingly diverse applications for aquatic ecosystems.