Most cited article - PubMed ID 32528514
Functional Relationships of Wood Anatomical Traits in Norway Spruce
INTRODUCTION: Quantitative wood anatomy is critical for establishing climate reconstruction proxies, understanding tree hydraulics, and quantifying carbon allocation. Its accuracy depends upon the image acquisition methods, which allows for the identification of the number and dimensions of vessels, fibres, and tracheids within a tree ring. Angiosperm wood is analysed with a variety of different image acquisition methods, including surface pictures, wood anatomical micro-sections, or X-ray computed micro-tomography. Despite known advantages and disadvantages, the quantitative impact of method selection on wood anatomical parameters is not well understood. METHODS: In this study, we present a systematic uncertainty analysis of the impact of the image acquisition method on commonly used anatomical parameters. We analysed four wood samples, representing a range of wood porosity, using surface pictures, micro-CT scans, and wood anatomical micro-sections. Inter-annual patterns were analysed and compared between methods from the five most frequently used parameters, namely mean lumen area (MLA), vessel density (VD), number of vessels (VN), mean hydraulic diameter (D h), and relative conductive area (RCA). A novel sectorial approach was applied on the wood samples to obtain intra-annual profiles of the lumen area (A l), specific theoretical hydraulic conductivity (K s), and wood density (ρ). RESULTS: Our quantitative vessel mapping revealed that values obtained for hydraulic wood anatomical parameters are comparable across different methods, supporting the use of easily applicable surface picture methods for ring-porous and specific diffuse-porous tree species. While intra-annual variability is well captured by the different methods across species, wood density (ρ) is overestimated due to the lack of fibre lumen area detection. DISCUSSION: Our study highlights the potential and limitations of different image acquisition methods for extracting wood anatomical parameters. Moreover, we present a standardized workflow for assessing radial tree ring profiles. These findings encourage the compilation of all studies using wood anatomical parameters and further research to refine these methods, ultimately enhancing the accuracy, replication, and spatial representation of wood anatomical studies.
KEY MESSAGE: The temperature sensitivity of maximum latewood density measurements in pine trees from a high-elevation site in the Spanish Pyrenees increases with tree age. Detrending modulates the intensity of the effect. ABSTRACT: Tree-rings are the prime archive for high-resolution climate information over the past two millennia. However, the accuracy of annually resolved reconstructions from tree-rings can be constrained by what is known as climate signal age effects (CSAE), encompassing changes in the sensitivity of tree growth to climate over their lifespans. Here, we evaluate CSAE in Pinus uncinata from an upper tree line site in the Spanish central Pyrenees, Lake Gerber, which became a key location for reconstructing western Mediterranean summer temperatures at annual resolution. We use tree-ring width (TRW) and maximum latewood density (MXD) measurements from 50 pine trees with individual ages ranging from 7 to 406 years. For MXD, temperature sensitivity increases significantly (p < 0.01) with tree age from r = 0.31 in juvenile rings with a cambial age < 100 years to r = 0.49 in adult rings > 100 years. Similar CSAE are not detected in TRW, likely affected by the overall lower temperature signal (r TRW = 0.45 vs. r MXD = 0.81 from 1951 to 2020). The severity of CSAE is influenced by the approach used to remove ontogenetic trends, highlighting the need to assess and consider potential biases during tree-ring standardization. Our findings reveal CSAE to add uncertainty in MXD-based climate reconstructions in the Mediterranean. We recommend studying CSAE by sampling diverse age classes in dendroclimatic field campaigns. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00468-024-02598-3.
- Keywords
- Climate change, Climate reconstruction, Dendrochronology, Paleoclimate, Tree line,
- Publication type
- Journal Article MeSH
The height growth of the trees depends on sufficient mechanical support given by the stem and an effective hydraulic system. On unstable slopes, tree growth is affected by soil pressure from above and potential soil erosion from below the position of tree. The necessary stabilization is then provided by the production of mechanically stronger wood of reduced hydraulic conductivity. Unfortunately, the interaction between tree growth (both radial and axial) and stabilization in the soil is still insufficiently understood. Therefore, in this study, we aimed to quantify the impact of hillslope dynamics on the degree of tree growth and hydraulic limitation, and the potential effect on tree height growth and growth plasticity. To evaluate this effect, we took four cores from 80 individuals of Quercus robur and Fraxinus excelsior and measured tree-ring widths (TRWs) and vessel lumen areas (VLAs). The tree heights were evaluated using a terrestrial laser scanner, and local soil depth was measured by a soil auger. Our data showed a significant limitation of the tree hydraulic system related with the formation of eccentric tree-rings. The stem eccentricity decreased with increasing stem diameter, but at the same time, the negative effect of stem eccentricity on conduit size increased with the increasing stem diameter. Even though this anatomical adaptation associated with the effect of stem eccentricity differed between the tree species (mainly in the different degree of limitations in conduit size), the trees showed an increase in the proportion of hydraulically inactive wood elements and a lowered effectiveness of their hydraulic system. In addition, we observed a larger negative effect of stem eccentricity on VLA in Quercus. We conclude that the stabilization of a tree in unstable soil is accompanied by an inability to create sufficiently effective hydraulic system, resulting in severe height-growth limitation. This affects the accumulation of aboveground biomass and carbon sequestration.
- Keywords
- Fraxinus, Quercus, biogenic creep, height limitation, hillslope processes, stem eccentricity, tree stability, wood anatomy,
- Publication type
- Journal Article MeSH