Nejvíce citovaný článek - PubMed ID 32866596
The effects of p53 gene inactivation on mutant proteome expression in a human melanoma cell model
BACKGROUND: PD-L1 expression on cancer cells is an important mechanism of tumor immune escape, and immunotherapy targeting the PD-L1/PD1 interaction is a common treatment option for patients with melanoma. However, many patients do not respond to treatment and novel predictors of response are emerging. One suggested modifier of PD-L1 is the p53 pathway, although the relationship of p53 pathway function and activation is poorly understood. METHODS: The study was performed on human melanoma cell lines with various p53 status. We investigated PD-L1 and proteins involved in IFNγ signaling by immunoblotting and mRNA expression, as well as membrane expression of PD-L1 by flow cytometry. We evaluated differences in the ability of NK cells to recognize and kill target tumor cells on the basis of p53 status. We also investigated the influence of proteasomal degradation and protein half-life, IFNγ signaling and p53 activation on biological outcomes, and performed bioinformatic analysis using available data for melanoma cell lines and melanoma patients. RESULTS: We demonstrate that p53 status changes the level of membrane and total PD-L1 protein through IRF1 regulation and show that p53 loss influences the recently discovered SOX10/IRF1 regulatory axis. Bioinformatic analysis identified a dependency of SOX10 on p53 status in melanoma, and a co-regulation of immune signaling by both transcription factors. However, IRF1/PD-L1 regulation by p53 activation revealed complicated regulatory mechanisms that alter IRF1 mRNA but not protein levels. IFNγ activation revealed no dramatic differences based on TP53 status, although dual p53 activation and IFNγ treatment confirmed a complex regulatory loop between p53 and the IRF1/PD-L1 axis. CONCLUSIONS: We show that p53 loss influences the level of PD-L1 through IRF1 and SOX10 in an isogenic melanoma cell model, and that p53 loss affects NK-cell cytotoxicity toward tumor cells. Moreover, activation of p53 by MDM2 inhibition has a complex effect on IRF1/PD-L1 activation. These findings indicate that evaluation of p53 status in patients with melanoma will be important for predicting the response to PD-L1 monotherapy and/or dual treatments where p53 pathways participate in the overall response.
- Klíčová slova
- IFNγ, IRF1, PD-L1, SOX10, p53,
- MeSH
- antigeny CD274 * metabolismus genetika MeSH
- buňky NK metabolismus imunologie MeSH
- interferon gama metabolismus genetika MeSH
- interferonový regulační faktor 1 * metabolismus genetika MeSH
- lidé MeSH
- melanom * genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- nádorový supresorový protein p53 * metabolismus genetika MeSH
- regulace genové exprese u nádorů MeSH
- signální transdukce * MeSH
- transkripční faktory SOXE * metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny CD274 * MeSH
- CD274 protein, human MeSH Prohlížeč
- interferon gama MeSH
- interferonový regulační faktor 1 * MeSH
- IRF1 protein, human MeSH Prohlížeč
- nádorový supresorový protein p53 * MeSH
- SOX10 protein, human MeSH Prohlížeč
- TP53 protein, human MeSH Prohlížeč
- transkripční faktory SOXE * MeSH
RNA variants that emerge from editing and alternative splicing form important regulatory stages in protein signalling. In this report, we apply an integrated DNA and RNA variant detection workbench to define the range of RNA variants that deviate from the reference genome in a human melanoma cell model. The RNA variants can be grouped into (i) classic ADAR-like or APOBEC-like RNA editing events and (ii) multiple-nucleotide variants (MNVs) including three and six base pair in-frame non-canonical unmapped exons. We focus on validating representative genes of these classes. First, clustered non-synonymous RNA edits (A-I) in the CDK13 gene were validated by Sanger sequencing to confirm the integrity of the RNA variant detection workbench. Second, a highly conserved RNA variant in the MAP4K5 gene was detected that results most likely from the splicing of a non-canonical three-base exon. The two RNA variants produced from the MAP4K5 locus deviate from the genomic reference sequence and produce V569E or V569del isoform variants. Low doses of splicing inhibitors demonstrated that the MAP4K5-V569E variant emerges from an SF3B1-dependent splicing event. Mass spectrometry of the recombinant SBP-tagged MAP4K5V569E and MAP4K5V569del proteins pull-downs in transfected cell systems was used to identify the protein-protein interactions of these two MAP4K5 isoforms and propose possible functions. Together these data highlight the utility of this integrated DNA and RNA variant detection platform to detect RNA variants in cancer cells and support future analysis of RNA variant detection in cancer tissue.
- Klíčová slova
- Cancer, RNA editing, mass spectrometry, proteogenomics, splicing,
- MeSH
- alternativní sestřih * MeSH
- DNA genetika MeSH
- editace RNA MeSH
- exony * MeSH
- izoenzymy MeSH
- lidé MeSH
- protein-serin-threoninkinasy genetika MeSH
- RNA genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- izoenzymy MeSH
- MAP4K5 protein, human MeSH Prohlížeč
- protein-serin-threoninkinasy MeSH
- RNA MeSH
The TAP1-TAP2 complex transports antigenic peptide substrates into the endoplasmic reticulum (ER). In ER, the peptides are further processed and loaded on the major histocompatibility class (MHC) I molecules by the peptide loading complex (PLC). The TAP transporters are linked with the PLC; a target for cancers and viral immune evasion. But the mechanisms whereby the cancer-derived mutations in TAP1-TAP2 or viral factors targeting the PLC, interfere peptide transport are only emerging. This study describes that transit of peptides through TAP can take place via two different channels (4 or 8 helices) depending on peptide length and sequence. Molecular dynamics and binding affinity predictions of peptide-transporters demonstrated that smaller peptides (8-10 mers; e.g. AAGIGILTV, SIINFEKL) can transport quickly through the transport tunnel compared to longer peptides (15-mer; e.g. ENPVVHFFKNIVTPR). In line with a regulated and selective peptide transport by TAPs, the immunopeptidome upon IFN-γ treatment in melanoma cells induced the shorter length (9-mer) peptide presentation over MHC-I that exhibit a relatively weak binding affinity with TAP. A conserved distance between N and C terminus residues of the studied peptides in the transport tunnel were reported. Furthermore, by adversely interacting with the TAP transport passage or affecting TAPNBD domains tilt movement, the viral proteins and cancer-derived mutations in TAP1-TAP2 may induce allosteric effects in TAP that block conformation of the tunnel (closed towards ER lumen). Interestingly, some cancer-associated mutations (e.g. TAP1R372Q and TAP2R373H) can specifically interfere with selective transport channels (i.e. for longer-peptides). These results provide a model for how viruses and cancer-associated mutations targeting TAP interfaces can affect MHC-I antigen presentation, and how the IFN-γ pathway alters MHC-I antigen presentation via the kinetics of peptide transport.
- Klíčová slova
- Cancer mutations, IFN-γ, Immunopeptidome, In silico peptide screening, Kinetics, MHC-I, Molecular dynamics, Peptide, TAP1, TAP2, Transporters, Viral factors,
- Publikační typ
- časopisecké články MeSH