Inverse correlation between TP53 gene status and PD-L1 protein levels in a melanoma cell model depends on an IRF1/SOX10 regulatory axis
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-02940S
Grantová Agentura České Republiky
19-18177Y
Grantová Agentura České Republiky
DRO (MMCI
Ministerstvo Zdravotnictví Ceské Republiky
00209805)
Ministerstvo Zdravotnictví Ceské Republiky
CZ.02.01.01/00/22_008/0004644
SALVAGE (P JAC)
PubMed
39237877
PubMed Central
PMC11378555
DOI
10.1186/s11658-024-00637-y
PII: 10.1186/s11658-024-00637-y
Knihovny.cz E-zdroje
- Klíčová slova
- IFNγ, IRF1, PD-L1, SOX10, p53,
- MeSH
- antigeny CD274 * metabolismus genetika MeSH
- buňky NK metabolismus imunologie MeSH
- interferon gama metabolismus genetika MeSH
- interferonový regulační faktor 1 * metabolismus genetika MeSH
- lidé MeSH
- melanom * genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- nádorový supresorový protein p53 * metabolismus genetika MeSH
- regulace genové exprese u nádorů MeSH
- signální transdukce * MeSH
- transkripční faktory SOXE * metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny CD274 * MeSH
- CD274 protein, human MeSH Prohlížeč
- interferon gama MeSH
- interferonový regulační faktor 1 * MeSH
- IRF1 protein, human MeSH Prohlížeč
- nádorový supresorový protein p53 * MeSH
- SOX10 protein, human MeSH Prohlížeč
- TP53 protein, human MeSH Prohlížeč
- transkripční faktory SOXE * MeSH
BACKGROUND: PD-L1 expression on cancer cells is an important mechanism of tumor immune escape, and immunotherapy targeting the PD-L1/PD1 interaction is a common treatment option for patients with melanoma. However, many patients do not respond to treatment and novel predictors of response are emerging. One suggested modifier of PD-L1 is the p53 pathway, although the relationship of p53 pathway function and activation is poorly understood. METHODS: The study was performed on human melanoma cell lines with various p53 status. We investigated PD-L1 and proteins involved in IFNγ signaling by immunoblotting and mRNA expression, as well as membrane expression of PD-L1 by flow cytometry. We evaluated differences in the ability of NK cells to recognize and kill target tumor cells on the basis of p53 status. We also investigated the influence of proteasomal degradation and protein half-life, IFNγ signaling and p53 activation on biological outcomes, and performed bioinformatic analysis using available data for melanoma cell lines and melanoma patients. RESULTS: We demonstrate that p53 status changes the level of membrane and total PD-L1 protein through IRF1 regulation and show that p53 loss influences the recently discovered SOX10/IRF1 regulatory axis. Bioinformatic analysis identified a dependency of SOX10 on p53 status in melanoma, and a co-regulation of immune signaling by both transcription factors. However, IRF1/PD-L1 regulation by p53 activation revealed complicated regulatory mechanisms that alter IRF1 mRNA but not protein levels. IFNγ activation revealed no dramatic differences based on TP53 status, although dual p53 activation and IFNγ treatment confirmed a complex regulatory loop between p53 and the IRF1/PD-L1 axis. CONCLUSIONS: We show that p53 loss influences the level of PD-L1 through IRF1 and SOX10 in an isogenic melanoma cell model, and that p53 loss affects NK-cell cytotoxicity toward tumor cells. Moreover, activation of p53 by MDM2 inhibition has a complex effect on IRF1/PD-L1 activation. These findings indicate that evaluation of p53 status in patients with melanoma will be important for predicting the response to PD-L1 monotherapy and/or dual treatments where p53 pathways participate in the overall response.
Department of Experimental Biology Faculty of Science Masaryk University 625 00 Brno Czech Republic
Institute of Genetics and Molecular Medicine University of Edinburgh Edinburgh Scotland EH4 2XR UK
RECAMO Masaryk Memorial Cancer Institute 602 00 Brno Czech Republic
Zobrazit více v PubMed
Keilholz U, Ascierto PA, Dummer R, Robert C, Lorigan P, van Akkooi A, et al. ESMO consensus conference recommendations on the management of metastatic melanoma: under the auspices of the ESMO guidelines committee. Ann Oncol. 2020;31:1435–48. 10.1016/j.annonc.2020.07.004 PubMed DOI
Switzer B, Puzanov I, Skitzki JJ, Hamad L, Ernstoff MS. Managing metastatic melanoma in 2022: a clinical review. JCO Oncol Pract. 2022;18:335–51. 10.1200/OP.21.00686 PubMed DOI PMC
Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, et al. Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 2022;72:409–36. 10.3322/caac.21731 PubMed DOI
Gellrich FF, Schmitz M, Beissert S, Meier F. Anti-PD-1 and novel combinations in the treatment of melanoma-an update. J Clin Med. 2020;9:223. 10.3390/jcm9010223 PubMed DOI PMC
Sahni S, Valecha G, Sahni A. Role of anti-PD-1 antibodies in advanced melanoma: the era of immunotherapy. Cureus. 2018;10: e3700. PubMed PMC
Xu Y, Wan B, Chen X, Zhan P, Zhao Y, Zhang T, et al. The association of PD-L1 expression with the efficacy of anti-PD-1/PD-L1 immunotherapy and survival of non-small cell lung cancer patients: a meta-analysis of randomized controlled trials. Transl Lung Cancer Res. 2019;8:413–28. 10.21037/tlcr.2019.08.09 PubMed DOI PMC
Patel SP, Kurzrock R. PD-L1 Expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 2015;14:847–56. 10.1158/1535-7163.MCT-14-0983 PubMed DOI
Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28:3167–75. 10.1200/JCO.2009.26.7609 PubMed DOI PMC
Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54. 10.1056/NEJMoa1200690 PubMed DOI PMC
Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20:5064–74. 10.1158/1078-0432.CCR-13-3271 PubMed DOI PMC
Greil R, Hutterer E, Hartmann TN, Pleyer L. Reactivation of dormant anti-tumor immunity—a clinical perspective of therapeutic immune checkpoint modulation. Cell Commun Signal. 2017;15:5. 10.1186/s12964-016-0155-9 PubMed DOI PMC
Li H, van der Merwe PA, Sivakumar S. Biomarkers of response to PD-1 pathway blockade. Br J Cancer. 2022;126:1663–75. 10.1038/s41416-022-01743-4 PubMed DOI PMC
Patel SJ, Sanjana NE, Kishton RJ, Eidizadeh A, Vodnala SK, Cam M, et al. Identification of essential genes for cancer immunotherapy. Nature. 2017;548:537–42. 10.1038/nature23477 PubMed DOI PMC
Zhu K, Wang J, Zhu J, Jiang J, Shou J, Chen X. p53 induces TAP1 and enhances the transport of MHC class I peptides. Oncogene. 1999;18:7740–7. 10.1038/sj.onc.1203235 PubMed DOI
Wang B, Niu D, Lai L, Ren EC. p53 increases MHC class I expression by upregulating the endoplasmic reticulum aminopeptidase ERAP1. Nat Commun. 2013;4:2359. 10.1038/ncomms3359 PubMed DOI PMC
Wang HQ, Mulford IJ, Sharp F, Liang J, Kurtulus S, Trabucco G, et al. Inhibition of MDM2 promotes antitumor responses in p53 wild-type cancer cells through their interaction with the immune and stromal microenvironment. Cancer Res. 2021;81:3079–91. 10.1158/0008-5472.CAN-20-0189 PubMed DOI
Slatter TL, Wilson M, Tang C, Campbell HG, Ward VK, Young VL, et al. Antitumor cytotoxicity induced by bone-marrow-derived antigen-presenting cells is facilitated by the tumor suppressor protein p53 via regulation of IL-12. Oncoimmunology. 2016;5: e1112941. 10.1080/2162402X.2015.1112941 PubMed DOI PMC
Pandya P, Kublo L, Stewart-Ornstein J. p53 promotes cytokine expression in melanoma to regulate drug resistance and migration. Cells. 2022;11:405. 10.3390/cells11030405 PubMed DOI PMC
Zhou X, Singh M, Sanz Santos G, Guerlavais V, Carvajal LA, Aivado M, et al. Pharmacologic activation of p53 triggers viral mimicry response thereby abolishing tumor immune evasion and promoting antitumor immunity. Cancer Discov. 2021;11:3090–105. 10.1158/2159-8290.CD-20-1741 PubMed DOI PMC
Vadakekolathu J, Lai C, Reeder S, Church SE, Hood T, Lourdusamy A, et al. TP53 abnormalities correlate with immune infiltration and associate with response to flotetuzumab immunotherapy in AML. Blood Adv. 2020;4:5011–24. 10.1182/bloodadvances.2020002512 PubMed DOI PMC
Blagih J, Buck MD, Vousden KH. p53, cancer and the immune response. J Cell Sci. 2020. 10.1242/jcs.237453. 10.1242/jcs.237453 PubMed DOI
Haronikova L, Bonczek O, Zatloukalova P, Kokas-Zavadil F, Kucerikova M, Coates PJ, et al. Resistance mechanisms to inhibitors of p53-MDM2 interactions in cancer therapy: can we overcome them? Cell Mol Biol Lett. 2021;26:53. 10.1186/s11658-021-00293-6 PubMed DOI PMC
Ghosh A, Michels J, Mezzadra R, Venkatesh D, Dong L, Gomez R, et al. Increased p53 expression induced by APR-246 reprograms tumor-associated macrophages to augment immune checkpoint blockade. J Clin Invest. 2022;132: e148141. 10.1172/JCI148141 PubMed DOI PMC
Sahin I, Zhang S, Navaraj A, Zhou L, Dizon D, Safran H, et al. AMG-232 sensitizes high MDM2-expressing tumor cells to T-cell-mediated killing. Cell Death Discov. 2020;6:57. 10.1038/s41420-020-0292-1 PubMed DOI PMC
Li R, Zatloukalova P, Muller P, Gil-Mir M, Kote S, Wilkinson S, et al. The MDM2 ligand Nutlin-3 differentially alters expression of the immune blockade receptors PD-L1 and CD276. Cell Mol Biol Lett. 2020;25:41. 10.1186/s11658-020-00233-w PubMed DOI PMC
Tojyo I, Shintani Y, Nakanishi T, Okamoto K, Hiraishi Y, Fujita S, et al. PD-L1 expression correlated with p53 expression in oral squamous cell carcinoma. Maxillofac Plast Reconstr Surg. 2019;41:56. 10.1186/s40902-019-0239-8 PubMed DOI PMC
Sun H, Liu S-Y, Zhou J-Y, Xu J-T, Zhang H-K, Yan H-H, et al. Specific TP53 subtype as biomarker for immune checkpoint inhibitors in lung adenocarcinoma. EBioMedicine. 2020;60: 102990. 10.1016/j.ebiom.2020.102990 PubMed DOI PMC
Alos L, Fuster C, Castillo P, Jares P, Garcia-Herrera A, Marginet M, et al. TP53 mutation and tumoral PD-L1 expression are associated with depth of invasion in desmoplastic melanomas. Ann Transl Med. 2020;8:1218. 10.21037/atm-20-1846 PubMed DOI PMC
Yu X-Y, Zhang X-W, Wang F, Lin Y-B, Wang W-D, Chen Y-Q, et al. Correlation and prognostic significance of PD-L1 and P53 expression in resected primary pulmonary lymphoepithelioma-like carcinoma. J Thorac Dis. 2018;10:1891–902. 10.21037/jtd.2018.03.14 PubMed DOI PMC
Thiem A, Hesbacher S, Kneitz H, di Primio T, Heppt MV, Hermanns HM, et al. IFN-gamma-induced PD-L1 expression in melanoma depends on p53 expression. J Exp Clin Cancer Res. 2019;38:397. 10.1186/s13046-019-1403-9 PubMed DOI PMC
Ni L, Lu J. Interferon gamma in cancer immunotherapy. Cancer Med. 2018;7:4509–16. 10.1002/cam4.1700 PubMed DOI PMC
Yokoyama S, Takahashi A, Kikuchi R, Nishibu S, Lo JA, Hejna M, et al. SOX10 regulates melanoma immunogenicity through an IRF4-IRF1 axis. Cancer Res. 2021;81:6131–41. 10.1158/0008-5472.CAN-21-2078 PubMed DOI PMC
Sun C, Wang L, Huang S, Heynen GJJE, Prahallad A, Robert C, et al. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature. 2014;508:118–22. 10.1038/nature13121 PubMed DOI
Capparelli C, Purwin TJ, Glasheen M, Caksa S, Tiago M, Wilski N, et al. Targeting SOX10-deficient cells to reduce the dormant-invasive phenotype state in melanoma. Nat Commun. 2022;13:1381. 10.1038/s41467-022-28801-y PubMed DOI PMC
Müller P, Ceskova P, Vojtesek B. Hsp90 is essential for restoring cellular functions of temperature-sensitive p53 mutant protein but not for stabilization and activation of wild-type p53: implications for cancer therapy. J Biol Chem. 2005;280:6682–91. 10.1074/jbc.M412767200 PubMed DOI
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4. 10.1158/2159-8290.CD-12-0095 PubMed DOI PMC
Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013. 10.1126/scisignal.2004088. 10.1126/scisignal.2004088 PubMed DOI PMC
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49:D545–51. 10.1093/nar/gkaa970 PubMed DOI PMC
Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36:2628–9. 10.1093/bioinformatics/btz931 PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. 10.1186/s13059-014-0550-8 PubMed DOI PMC
Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, Cowley GS, et al. Defining a cancer dependency map. Cell. 2017;170:564-576.e16. 10.1016/j.cell.2017.06.010 PubMed DOI PMC
Behan FM, Iorio F, Picco G, Gonçalves E, Beaver CM, Migliardi G, et al. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature. 2019;568:511–6. 10.1038/s41586-019-1103-9 PubMed DOI
Rew Y, Sun D. Discovery of a small molecule MDM2 inhibitor (AMG 232) for treating cancer. J Med Chem. 2014;57:6332–41. 10.1021/jm500627s PubMed DOI
Landré V, Pion E, Narayan V, Xirodimas DP, Ball KL. DNA-binding regulates site-specific ubiquitination of IRF-1. Biochem J. 2013;449:707–17. 10.1042/BJ20121076 PubMed DOI
Remoli AL, Marsili G, Perrotti E, Acchioni C, Sgarbanti M, Borsetti A, et al. HIV-1 Tat recruits HDM2 E3 ligase to target IRF-1 for ubiquitination and proteasomal degradation. MBio. 2016;7:e01528-e1616. 10.1128/mBio.01528-16 PubMed DOI PMC
Dey A, Wong ET, Bist P, Tergaonkar V, Lane DP. Nutlin-3 inhibits the NFkappaB pathway in a p53-dependent manner: implications in lung cancer therapy. Cell Cycle. 2007;6:2178–85. 10.4161/cc.6.17.4643 PubMed DOI
Au-Yeung N, Mandhana R, Horvath CM. Transcriptional regulation by STAT1 and STAT2 in the interferon JAK-STAT pathway. JAKSTAT. 2013;2: e23931. PubMed PMC
Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, et al. Interferon Receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 2017;19:1189–201. 10.1016/j.celrep.2017.04.031 PubMed DOI PMC
Drew PD, Franzoso G, Becker KG, Bours V, Carlson LM, Siebenlist U, et al. NF kappa B and interferon regulatory factor 1 physically interact and synergistically induce major histocompatibility class I gene expression. J Interferon Cytokine Res. 1995;15:1037–45. 10.1089/jir.1995.15.1037 PubMed DOI
Kirchhoff S, Wilhelm D, Angel P, Hauser H. NFkappaB activation is required for interferon regulatory factor-1-mediated interferon beta induction. Eur J Biochem. 1999;261:546–54. 10.1046/j.1432-1327.1999.00308.x PubMed DOI
Kortylewski M, Komyod W, Kauffmann M-E, Bosserhoff A, Heinrich PC, Behrmann I. Interferon-gamma-mediated growth regulation of melanoma cells: involvement of STAT1-dependent and STAT1-independent signals. J Invest Dermatol. 2004;122:414–22. 10.1046/j.0022-202X.2004.22237.x PubMed DOI
Cappello S, Sung H-M, Ickes C, Gibhardt CS, Vultur A, Bhat H, et al. Protein signatures of NK Cell-mediated melanoma killing predict response to immunotherapies. Cancer Res. 2021;81:5540–54. 10.1158/0008-5472.CAN-21-0164 PubMed DOI PMC
Hsu J, Hodgins JJ, Marathe M, Nicolai CJ, Bourgeois-Daigneault M-C, Trevino TN, et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Invest. 2018;128:4654–68. 10.1172/JCI99317 PubMed DOI PMC
Mariotti FR, Petrini S, Ingegnere T, Tumino N, Besi F, Scordamaglia F, et al. PD-1 in human NK cells: evidence of cytoplasmic mRNA and protein expression. Oncoimmunology. 2019;8:1557030. 10.1080/2162402X.2018.1557030 PubMed DOI PMC
Muñoz-Fontela C, Mandinova A, Aaronson SA, Lee SW. Emerging roles of p53 and other tumour-suppressor genes in immune regulation. Nat Rev Immunol. 2016;16:741–50. 10.1038/nri.2016.99 PubMed DOI PMC
Ghosh M, Saha S, Bettke J, Nagar R, Parrales A, Iwakuma T, et al. Mutant p53 suppresses innate immune signaling to promote tumorigenesis. Cancer Cell. 2021;39:494-508.e5. 10.1016/j.ccell.2021.01.003 PubMed DOI PMC
Shi D, Jiang P. A different facet of p53 function: regulation of immunity and inflammation during tumor development. Front Cell Dev Biol. 2021;9: 762651. 10.3389/fcell.2021.762651 PubMed DOI PMC
Langenbach M, Giesler S, Richtsfeld S, Costa-Pereira S, Rindlisbacher L, Wertheimer T, et al. MDM2 inhibition enhances immune checkpoint inhibitor efficacy by increasing IL15 and MHC class II production. Mol Cancer Res. 2023;21:849–64. 10.1158/1541-7786.MCR-22-0898 PubMed DOI PMC
Phan TTT, Truong NV, Wu W-G, Su Y-C, Hsu T-S, Lin L-Y. Tumor suppressor p53 mediates interleukin-6 expression to enable cancer cell evasion of genotoxic stress. Cell Death Discov. 2023;9:340. 10.1038/s41420-023-01638-0 PubMed DOI PMC
Santhanam U, Ray A, Sehgal PB. Repression of the interleukin 6 gene promoter by p53 and the retinoblastoma susceptibility gene product. Proc Natl Acad Sci U S A. 1991;88:7605–9. 10.1073/pnas.88.17.7605 PubMed DOI PMC
Song LL, Alimirah F, Panchanathan R, Xin H, Choubey D. Expression of an IFN-inducible cellular senescence gene, IFI16, is up-regulated by p53. Mol Cancer Res. 2008;6:1732–41. 10.1158/1541-7786.MCR-08-0208 PubMed DOI
Krześniak M, Zajkowicz A, Gdowicz-Kłosok A, Głowala-Kosińska M, Łasut-Szyszka B, Rusin M. Synergistic activation of p53 by actinomycin D and nutlin-3a is associated with the upregulation of crucial regulators and effectors of innate immunity. Cell Signal. 2020;69: 109552. 10.1016/j.cellsig.2020.109552 PubMed DOI PMC
Shamalov K, Levy SN, Horovitz-Fried M, Cohen CJ. The mutational status of p53 can influence its recognition by human T-cells. Oncoimmunology. 2017;6: e1285990. 10.1080/2162402X.2017.1285990 PubMed DOI PMC
Li H, Lakshmikanth T, Garofalo C, Enge M, Spinnler C, Anichini A, et al. Pharmacological activation of p53 triggers anticancer innate immune response through induction of ULBP2. Cell Cycle. 2011;10:3346–58. 10.4161/cc.10.19.17630 PubMed DOI
Dinavahi SS, Chen Y-C, Punnath K, Berg A, Herlyn M, Foroutan M, et al. Targeting WEE1/AKT restores p53-dependent natural killer-cell activation to induce immune checkpoint blockade responses in “cold” melanoma. Cancer Immunol Res. 2022;10:757–69. 10.1158/2326-6066.CIR-21-0587 PubMed DOI PMC
Cortez MA, Ivan C, Valdecanas D, Wang X, Peltier HJ, Ye Y, et al. PDL1 regulation by p53 via miR-34. J Natl Cancer Inst. 2016. 10.1093/jnci/djv303. 10.1093/jnci/djv303 PubMed DOI PMC
Mohamed A, Gonzalez RS, Lawson D, Wang J, Cohen C. SOX10 expression in malignant melanoma, carcinoma, and normal tissues. Appl Immunohistochem Mol Morphol. 2013;21:506–10. 10.1097/PAI.0b013e318279bc0a PubMed DOI
Cronin JC, Watkins-Chow DE, Incao A, Hasskamp JH, Schönewolf N, Aoude LG, et al. SOX10 ablation arrests cell cycle, induces senescence, and suppresses melanomagenesis. Cancer Res. 2013;73:5709–18. 10.1158/0008-5472.CAN-12-4620 PubMed DOI PMC
Rosenbaum SR, Caksa S, Stefanski CD, Trachtenberg IV, Wilson HP, Wilski NA, et al. SOX10 loss sensitizes melanoma cells to cytokine-mediated inflammatory cell death. Mol Cancer Res. 2023. 10.1158/1541-7786.10.1158/1541-7786 PubMed DOI PMC
Abou-Hamad J, Hodgins JJ, de Souza CT, Garland B, Labrèche C, Marotel M, et al. CEACAM1 is a direct SOX10 target and inhibits melanoma immune infiltration and stemness. iScience. 2022;25:105524. 10.1016/j.isci.2022.105524 PubMed DOI PMC
Rosenbaum SR, Tiago M, Caksa S, Capparelli C, Purwin TJ, Kumar G, et al. SOX10 requirement for melanoma tumor growth is due, in part, to immune-mediated effects. Cell Rep. 2021;37: 110085. 10.1016/j.celrep.2021.110085 PubMed DOI PMC
Purwin TJ, Caksa S, Sacan A, Capparelli C, Aplin AE. Gene signature reveals decreased SOX10-dependent transcripts in malignant cells from immune checkpoint inhibitor-resistant cutaneous melanomas. iScience. 2023;26:107472. 10.1016/j.isci.2023.107472 PubMed DOI PMC
Sasaki K, Hirohashi Y, Murata K, Minowa T, Nakatsugawa M, Murai A, et al. SOX10 inhibits T cell recognition by inducing expression of the immune checkpoint molecule PD-L1 in A375 melanoma cells. Anticancer Res. 2023;43:1477–84. 10.21873/anticanres.16296 PubMed DOI
Kennedy MC, Lowe SW. Mutant p53: it’s not all one and the same. Cell Death Differ. 2022;29:983–7. 10.1038/s41418-022-00989-y PubMed DOI PMC
Baslan T, Morris JP, Zhao Z, Reyes J, Ho Y-J, Tsanov KM, et al. Ordered and deterministic cancer genome evolution after p53 loss. Nature. 2022;608:795–802. 10.1038/s41586-022-05082-5 PubMed DOI PMC
Marques JF, Kops GJPL. Permission to pass: on the role of p53 as a gatekeeper for aneuploidy. Chromosome Res. 2023;31:31. 10.1007/s10577-023-09741-9 PubMed DOI PMC
Begus-Nahrmann Y, Lechel A, Obenauf AC, Nalapareddy K, Peit E, Hoffmann E, et al. p53 deletion impairs clearance of chromosomal-instable stem cells in aging telomere-dysfunctional mice. Nat Genet. 2009;41:1138–43. 10.1038/ng.426 PubMed DOI
Faktor J, Grasso G, Zavadil Kokas F, Kurkowiak M, Mayordomo MY, Kote S, et al. The effects of p53 gene inactivation on mutant proteome expression in a human melanoma cell model. Biochim Biophys Acta Gen Subj. 2020;1864: 129722. 10.1016/j.bbagen.2020.129722 PubMed DOI
Candeias MM, Malbert-Colas L, Powell DJ, Daskalogianni C, Maslon MM, Naski N, et al. P53 mRNA controls p53 activity by managing Mdm2 functions. Nat Cell Biol. 2008;10:1098–105. 10.1038/ncb1770 PubMed DOI