Most cited article - PubMed ID 32911784
Bloch Surface Wave Resonance Based Sensors as an Alternative to Surface Plasmon Resonance Sensors
Interferometric methods of optical sensing based on the phase shift of the Bloch surface waves (BSWs) and guided waves (GWs) supported by a one-dimensional photonic crystal are presented. The photonic crystal, composed of six SiO2/TiO2 bilayers with a termination layer of TiO2, is employed in the Kretschmann configuration. Under resonance condition, an abrupt phase change is revealed, and the corresponding phase shift is measured by interferometric techniques applied in both the spectral and spatial domains. The spectral interferometric technique employing a birefringent quartz crystal is used to obtain interference of projections of p- and s-polarized light waves reflected from the photonic crystal. The phase shifts are retrieved by processing the spectral interferograms recorded for various values of relative humidity (RH) of air, giving the sensitivity to the RH as high as 0.029 rad/%RH and 0.012 rad/%RH for the BSW and GW, respectively. The spatial interferometric technique employs a Wollaston prism and an analyzer to generate an interference pattern, which is processed to retrieve the phase difference, and results are in good agreement with those obtained by sensing the phase shift in the spectral domain. In addition, from the derivative of the spectral phase shifts, the peak positions are obtained, and their changes with the RH give the sensitivities of 0.094 nm/%RH and 0.061 nm/%RH for the BSW and GW, respectively. These experimental results demonstrate an efficient optical sensing with a lot of applications in various research areas.
- Keywords
- Bloch surface waves, Kretschmann configuration, guided waves, interferometry, photonic crystal, relative humidity of air, spatial domain, spectral domain,
- Publication type
- Journal Article MeSH
In this paper, we present a new type of guided-mode resonance (GMR)-based sensor that utilizes a planar waveguide structure (PWS). We employed a PWS with an asymmetric three-layer waveguide structure consisting of substrate/Au/photoresist. The ellipsometric characterization of the structure layers, the simulated reflectance spectra, and optical field distributions under GMR conditions showed that multiple waveguide modes can be excited in the PWS. These modes can be used for refractive index sensing, and the theoretical analysis of the designed PWS showed a sensitivity to the refractive index up to 6600 nm per refractive index unit (RIU) and a figure of merit (FOM) up to 224 RIU-1. In response to these promising theoretical results, the PWS was used to measure the relative humidity (RH) of moist air with a sensitivity up to 0.141 nm/%RH and a FOM reaching 3.7 × 10-3%RH-1. The results demonstrate that this highly-sensitive and hysteresis-free sensor based on GMR has the potential to be used in a wide range of applications.
- Keywords
- figure of merit, guided-mode resonance, humidity sensor, planar waveguide structure, resonance wavelength, sensitivity,
- Publication type
- Letter MeSH