Most cited article - PubMed ID 32953066
Insectivorous birds can see and smell systemically herbivore-induced pines
The tri-trophic interactions between plants, insects, and insect predators and parasitoids are often mediated by chemical cues. The attraction to herbivore-induced Plant Volatiles (HIPVs) has been well documented for arthropod predators and parasitoids, and more recently for insectivorous birds. The attraction to plant volatiles induced by the exogenous application of methyl jasmonate (MeJA), a phytohormone typically produced in response to an attack of chewing herbivores, has provided controversial results both in arthropod and avian predators. In this study, we examined whether potential differences in the composition of bouquets of volatiles produced by herbivore-induced and MeJA-treated Pyrenean oak trees (Quercus pyrenaica) were related to differential avian attraction, as results from a previous study suggested. Results showed that the overall emission of volatiles produced by MeJA-treated and herbivore-induced trees did not differ, and were higher than emissions of Control trees, although MeJA treatment showed a more significant reaction and released several specific compounds in contrast to herbivore-induced trees. These slight yet significant differences in the volatile composition may explain why avian predators were not so attracted to MeJA-treated trees, as observed in a previous study in this plant-herbivore system. Unfortunately, the lack of avian visits to the experimental trees in the current study did not allow us to confirm this result and points out the need to perform more robust predator studies.
- Keywords
- avian olfaction, defense against herbivory, foraging, herbivore-induced plant volatiles,
- Publication type
- Journal Article MeSH
When searching for food, great tits (Parus major) can use herbivore-induced plant volatiles (HIPVs) as an indicator of arthropod presence. Their ability to detect HIPVs was shown to be learned, and not innate, yet the flexibility and generalization of learning remain unclear.We studied if, and if so how, naïve and trained great tits (Parus major) discriminate between herbivore-induced and noninduced saplings of Scotch elm (Ulmus glabra) and cattley guava (Psidium cattleyanum). We chemically analyzed the used plants and showed that their HIPVs differed significantly and overlapped only in a few compounds.Birds trained to discriminate between herbivore-induced and noninduced saplings preferred the herbivore-induced saplings of the plant species they were trained to. Naïve birds did not show any preferences. Our results indicate that the attraction of great tits to herbivore-induced plants is not innate, rather it is a skill that can be acquired through learning, one tree species at a time.We demonstrate that the ability to learn to associate HIPVs with food reward is flexible, expressed to both tested plant species, even if the plant species has not coevolved with the bird species (i.e., guava). Our results imply that the birds are not capable of generalizing HIPVs among tree species but suggest that they either learn to detect individual compounds or associate whole bouquets with food rewards.