Nejvíce citovaný článek - PubMed ID 32956450
CoLiDe: Combinatorial Library Design tool for probing protein sequence space
Given its highly innovative character and potential socioeconomic impact, Synthetic Biology is often ranked among prominent research areas and national research priorities in developed countries. The global evolution of this field is proceeding by leaps and bounds but its development at the level of individual states varies widely. Despite their current satisfactory economic status, the majority of 13, mostly post-communist, countries that entered the European Union family in and after 2004 (EU13) have long overlooked the blossoming of Synthetic Biology. Their prioritized lines of research have been directed elsewhere or "Synthetic Biology" did not become a widely accepted term to encompass their bioengineering and biotechnology domains. The Czech Republic is not an exception. The local SynBio mycelium already exists but is mainly built bottom-up through the activities of several academic labs, iGEM teams, and spin-off companies. In this article, we tell their individual stories and summarize the prerequisites that allowed their emergence in the Czech academic and business environment. In addition, we provide the reader with a brief overview of laboratories, research hubs, and companies that perform biotechnology and bioengineering-oriented research and that may be included in a notional "shadow SynBio community" but have not yet adopted Synthetic Biology as a unifying term for their ventures. We also map the current hindrances for a broader expansion of Synthetic Biology in the Czech Republic and suggest possible steps that should lead to the maturity of this fascinating research field in our country.
- Klíčová slova
- Biotechnology and bioengineering, Community, Czech Republic, EU13 countries, Public perception, Research landscape, Synthetic biology, iGEM,
- Publikační typ
- časopisecké články MeSH
The earliest proteins had to rely on amino acids available on early Earth before the biosynthetic pathways for more complex amino acids evolved. In extant proteins, a significant fraction of the 'late' amino acids (such as Arg, Lys, His, Cys, Trp and Tyr) belong to essential catalytic and structure-stabilizing residues. How (or if) early proteins could sustain an early biosphere has been a major puzzle. Here, we analysed two combinatorial protein libraries representing proxies of the available sequence space at two different evolutionary stages. The first is composed of the entire alphabet of 20 amino acids while the second one consists of only 10 residues (ASDGLIPTEV) representing a consensus view of plausibly available amino acids through prebiotic chemistry. We show that compact conformations resistant to proteolysis are surprisingly similarly abundant in both libraries. In addition, the early alphabet proteins are inherently more soluble and refoldable, independent of the general Hsp70 chaperone activity. By contrast, chaperones significantly increase the otherwise poor solubility of the modern alphabet proteins suggesting their coevolution with the amino acid repertoire. Our work indicates that while both early and modern amino acids are predisposed to supporting protein structure, they do so with different biophysical properties and via different mechanisms.
- Klíčová slova
- amino acid alphabet, genetic code evolution, protein sequence space, protein structure, random proteins,
- MeSH
- aminokyseliny * chemie MeSH
- prebiotika * MeSH
- proteiny chemie MeSH
- sbalování proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny * MeSH
- prebiotika * MeSH
- proteiny MeSH