Biotechnology and bioengineering Dotaz Zobrazit nápovědu
A classical quantitative (analytical and/or statistical) analysis is not appropriate for some ill-defined and/or very complex bioengineering problems. Therefore, a new form of analysis using fuzzy mathematics has been developed. The fuzzy model can utilize semiqualitative and linguistic data which are to a certain level inconsistent. Bioengineering interpretation of the basic concept of fuzzy mathematics is given together with a numerical algorithm for a fuzzy evaluation of a model. A simple fuzzy model of a fermentor is studied in detail.
- Publikační typ
- časopisecké články MeSH
Given its highly innovative character and potential socioeconomic impact, Synthetic Biology is often ranked among prominent research areas and national research priorities in developed countries. The global evolution of this field is proceeding by leaps and bounds but its development at the level of individual states varies widely. Despite their current satisfactory economic status, the majority of 13, mostly post-communist, countries that entered the European Union family in and after 2004 (EU13) have long overlooked the blossoming of Synthetic Biology. Their prioritized lines of research have been directed elsewhere or "Synthetic Biology" did not become a widely accepted term to encompass their bioengineering and biotechnology domains. The Czech Republic is not an exception. The local SynBio mycelium already exists but is mainly built bottom-up through the activities of several academic labs, iGEM teams, and spin-off companies. In this article, we tell their individual stories and summarize the prerequisites that allowed their emergence in the Czech academic and business environment. In addition, we provide the reader with a brief overview of laboratories, research hubs, and companies that perform biotechnology and bioengineering-oriented research and that may be included in a notional "shadow SynBio community" but have not yet adopted Synthetic Biology as a unifying term for their ventures. We also map the current hindrances for a broader expansion of Synthetic Biology in the Czech Republic and suggest possible steps that should lead to the maturity of this fascinating research field in our country.
- Klíčová slova
- Biotechnology and bioengineering, Community, Czech Republic, EU13 countries, Public perception, Research landscape, Synthetic biology, iGEM,
- Publikační typ
- časopisecké články MeSH
Shikonins are commercially important secondary compounds, known for array of biological activities such as antimicrobial, insecticidal, antitumor, antioxidants, etc. These compounds are usually colored and therefore have application in food, textiles and cosmetics. Shikonin and its derivatives, which are commercially most important of the naphthoquinone pigments, are distributed among members of the family Boraginaceae. These include different species of Lithospermum, Arnebia, Alkanna, Anchusa, Echium and Onosma. The growing demand for plant-based natural products has made this group of compounds one of the enthralling targets for their in vitro production. The aim of this review is to highlight the recent progress in production of shikonins by various biotechnological means. Different methods of increasing the levels of shikonins in plant cells such as selection of cell lines, optimization of culture conditions, elicitation, in situ product removal, genetic transformation and metabolic engineering are discussed. The experience of different researchers working worldwide on this aspect is also considered. Further, to meet market demand, the needs for continuous and reliable production systems, as well as future prospects, are included.
- Klíčová slova
- Alkannin, boraginaceae, cell culture, in vitro culture, naphthoquinones, natural products, pigments, secondary metabolites,
- MeSH
- bioinženýrství * MeSH
- Boraginaceae * chemie metabolismus MeSH
- naftochinony * chemie metabolismus terapeutické užití MeSH
- rostlinné extrakty * analýza chemie metabolismus MeSH
- techniky tkáňových kultur * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- naftochinony * MeSH
- rostlinné extrakty * MeSH
- shikonin MeSH Prohlížeč
Viable microbial cells are important biocatalysts in the production of fine chemicals and biofuels, in environmental applications and also in emerging applications such as biosensors or medicine. Their increasing significance is driven mainly by the intensive development of high performance recombinant strains supplying multienzyme cascade reaction pathways, and by advances in preservation of the native state and stability of whole-cell biocatalysts throughout their application. In many cases, the stability and performance of whole-cell biocatalysts can be highly improved by controlled immobilization techniques. This review summarizes the current progress in the development of immobilized whole-cell biocatalysts, the immobilization methods as well as in the bioreaction engineering aspects and economical aspects of their biocatalytic applications.
- Klíčová slova
- Biocatalysis, Immobilization methods, Immobilized whole-cell biocatalyst, Multienzyme cascade reactions, Process economics, Reaction engineering,
- MeSH
- bioinženýrství * MeSH
- biokatalýza * MeSH
- bioreaktory * MeSH
- imobilizované buňky * MeSH
- lidé MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Microbial technology includes not only the production of materials in bioreactors, or the production of new catalysts by genetic engineering but extends to aspects of both human and animal health care, waste and pollution management, enhanced oil recovery, mineral leaching, advanced plant breeding, diagnostics and analytical equipment, biosensors, bioelectronics and renewable energy system based on biomass feedstocks. National strategies of industrialized countries are being developed which identify microbial technology as a substantial factor in the attainment of industrial and economic goals. Although extremely promising microbial technology is not a quick fix and its application will only arise as a result of systematic programme of research and development. Such programme requires a broad base of disciplinary underpinning in molecular biology, genetics and bioengineering. The development of expertise of this kind in the tertiary educational institutions is the essential starting point. It should be developed by appropriate programmes and networking systems.
- MeSH
- biotechnologie * MeSH
- genetické inženýrství MeSH
- lidé MeSH
- mikrobiologie trendy MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The freshwater alga Chlorella, a highly productive source of starch, might substitute for starch-rich terrestrial plants in bioethanol production. The cultivation conditions necessary for maximizing starch content in Chlorella biomass, generated in outdoor scale-up solar photobioreactors, are described. The most important factor that can affect the rate of starch synthesis, and its accumulation, is mean illumination resulting from a combination of biomass concentration and incident light intensity. While 8.5% DW of starch was attained at a mean light intensity of 215 µmol/(m2 s1), 40% of DW was synthesized at a mean light intensity 330 µmol/(m2 s1). Another important factor is the phase of the cell cycle. The content of starch was highest (45% of DW) prior to cell division, but during the course of division, its cellular level rapidly decreased to about 13% of DW in cells grown in light, or to about 4% in those kept in the dark during the division phase. To produce biomass with high starch content, it is necessary to suppress cell division events, but not to disturb synthesis of starch in the chloroplast. The addition of cycloheximide (1 mg/L), a specific inhibitor of cytoplasmic protein synthesis, and the effect of element limitation (nitrogen, sulfur, phosphorus) were tested. The majority of the experiments were carried out in laboratory-scale photobioreactors, where culture treatments increased starch content to up to about 60% of DW in the case of cycloheximide inhibition or sulfur limitation. When the cells were limited by phosphorus or nitrogen supply, the cellular starch content increased to 55% or 38% of DW, respectively, however, after about 20 h, growth of the cultures stopped producing starch, and the content of starch again decreased. Sulfur limited and cycloheximide-treated cells maintained a high content of starch (60% of DW) for up to 2 days. Sulfur limitation, the most appropriate treatment for scaled-up culture of starch-enriched biomass, was carried out in an outdoor pilot-scale experiment. After 120 h of growth in complete mineral medium, during which time the starch content reached around 18% of DW, sulfur limitation increased the starch content to 50% of DW.
- MeSH
- biomasa MeSH
- biotechnologie metody MeSH
- Chlorella vulgaris metabolismus MeSH
- dusík metabolismus MeSH
- fosfor metabolismus MeSH
- fotobioreaktory * MeSH
- mikrořasy metabolismus MeSH
- síra metabolismus MeSH
- škrob biosyntéza metabolismus MeSH
- sluneční záření MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusík MeSH
- fosfor MeSH
- síra MeSH
- škrob MeSH
The alga Parachlorella kessleri, strain CCALA 255, grown under optimal conditions, is characterized by storage of energy in the form of starch rather than lipids. If grown in the complete medium, the cultures grew rapidly, producing large amounts of biomass in a relatively short time. The cells, however, contained negligible lipid reserves (1-10% of DW). Treatments inducing hyperproduction of storage lipids in P. kessleri biomass were described. The cultures were grown in the absence or fivefold decreased concentration of either nitrogen or phosphorus or sulfur. Limitation by all elements using fivefold or 10-fold diluted mineral medium was also tested. Limitation with any macroelement (nitrogen, sulfur, or phosphorus) led to an increase in the amount of lipids; nitrogen limitation was the most effective. Diluted nutrient media (5- or 10-fold) were identified as the best method to stimulate lipid overproduction (60% of DW). The strategy for lipid overproduction consists of the fast growth of P. kessleri culture grown in the complete medium to produce sufficient biomass (DW more than 10 g/L) followed by the dilution of nutrient medium to stop growth and cell division by limitation of all elements, leading to induction of lipid production and accumulation up to 60% DW. Cultivation conditions necessary for maximizing lipid content in P. kessleri biomass generated in a scale-up solar open thin-layer photobioreactor were described.
- MeSH
- biomasa MeSH
- biotechnologie MeSH
- chlorofyl analýza metabolismus MeSH
- Chlorophyta metabolismus MeSH
- fotobioreaktory MeSH
- kultivační média MeSH
- lipidy biosyntéza MeSH
- mastné kyseliny analýza metabolismus MeSH
- metabolismus lipidů MeSH
- mikrořasy metabolismus MeSH
- oxid uhličitý metabolismus MeSH
- škrob analýza metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl MeSH
- kultivační média MeSH
- lipidy MeSH
- mastné kyseliny MeSH
- oxid uhličitý MeSH
- škrob MeSH
Small-scale photobioreactors for cultivation of photoautotrophic microbes are required for precise characterization of the growth parameters of wild-type and engineered strains of these organisms, for their screening, and for optimization of culture conditions. Here, we describe the design and use of a flat-cuvette photobioreactor that allows accurate control of culture irradiance, temperature, pH, and gas composition combined with real-time monitoring by a built-in fluorometer and densitometer. The high-power LED light source generates precise irradiance levels that are programmed by user-designed protocols. The irradiance, temperature, and gas composition may be static or dynamically modulated, while optical density and pH may be stabilized in turbidostat and pH-stat modes, respectively. We demonstrate that the instrument is able to detect minute variations of growth caused, for example, by sudden dilution or by circadian rhythms. The sensitivity of the instrument is sufficient to monitor suspension optical density as low as 10(-2). This newly designed photobioreactor can significantly contribute to the study and use of photoautotrophic microbes in systems biology and biotechnology.
- MeSH
- analýza selhání vybavení MeSH
- bioreaktory mikrobiologie MeSH
- buněčné kultury přístrojové vybavení MeSH
- design vybavení MeSH
- fotobiologie přístrojové vybavení MeSH
- monitorování fyziologických funkcí přístrojové vybavení MeSH
- počet mikrobiálních kolonií metody MeSH
- sinice cytologie fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The circular economy of animal by-products rich in collagen focuses on converting collagen into peptides with a defined molecular weight. Collagen hydrolysates prepared by biotechnological methods from chicken gizzards, deer tendons, and Cyprinus carpio skeletons can be an alternative source of collagen for cosmetic products that traditionally use bovine or porcine collagen hydrolysates. Collagen hydrolysates were characterized by antioxidant activity, surface tension, solution contact angle, and other parameters (dry weight, ash content, and solution clarity). Furthermore, the vibrational characterization of functional groups and their molecular weight was performed using the GPC-RID method. Subsequently, emulsion and gel cosmetic matrices were prepared with 0.5% and 1.5% collagen hydrolysates. Microbiological stability, organoleptic properties, and viscosity were investigated. Verification of the biophysical parameters of the topical formulations was performed in vivo on a group of volunteers by measuring skin hydration and pH and determining trans-epidermal water loss. Fish collagen hydrolysate was the most suitable for cosmetic applications in the parameters investigated. Moreover, it also effectively reduces wrinkles in the periorbital region when used in a gel matrix.
- Klíčová slova
- animal by-products, antimicrobial effect, bioengineering methods, collagen hydrolysate, topical formulation, wrinkles,
- MeSH
- antioxidancia chemie farmakologie MeSH
- aplikace lokální MeSH
- kapři metabolismus MeSH
- kolagen * chemie MeSH
- kosmetické přípravky * chemie MeSH
- kur domácí MeSH
- kůže metabolismus účinky léků MeSH
- lidé MeSH
- proteinové hydrolyzáty * chemie farmakologie MeSH
- stárnutí kůže účinky léků MeSH
- viskozita MeSH
- vysoká zvěř MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- kolagen * MeSH
- kosmetické přípravky * MeSH
- proteinové hydrolyzáty * MeSH
Electrocoagulation is an evolving technology that has been effectively applied for wastewater treatment but its applications in biotechnology and nanotechnology are very limited. This method was applied for the preparation of nanoparticles from soluble exopolysaccharide (EPS) produced by Claviceps viridis in a submerged batch culture. A cathode/anode pair electrode (Al or Fe) system was used for determination of the separation rates of electrocoagulation and the yields of EPS nanoparticles production. The separation rates of 0.170 +/- 0.003 mg EPS/sec (Fe electrodes) and 0.250 +/- 0.003 mg EPS/sec (Al electrodes) were calculated for voltage gradient 1 V/1 cm of electrodes distance and were constant during experiments. The specific yield of EPS nanoparticles production based on the consumed electric power was dependent on the material of the electrodes and its value was determined as 0.71 +/- 0.01 mg EPS/W for Fe electrodes and 0.91 +/- 0.01 mg EPS/W for Al electrodes, respectively.
- MeSH
- chemická precipitace MeSH
- Claviceps metabolismus MeSH
- elektrochemie metody MeSH
- elektrody MeSH
- elektromagnetická pole MeSH
- nanotechnologie metody MeSH
- nanotrubičky chemie účinky záření MeSH
- polysacharidy chemie izolace a purifikace metabolismus účinky záření MeSH
- rozpustnost MeSH
- velikost částic MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- polysacharidy MeSH