Most cited article - PubMed ID 32996504
Solvation energies of ions with ensemble cluster-continuum approach
Liquid-jet photoemission spectroscopy (LJ-PES) directly probes the electronic structure of solutes and solvents. It also emerges as a novel tool to explore chemical structure in aqueous solutions, yet the scope of the approach has to be examined. Here, we present a pH-dependent liquid-jet photoelectron spectroscopic investigation of ascorbic acid (vitamin C). We combine core-level photoelectron spectroscopy and ab initio calculations, allowing us to site-specifically explore the acid-base chemistry of the biomolecule. For the first time, we demonstrate the capability of the method to simultaneously assign two deprotonation sites within the molecule. We show that a large change in chemical shift appears even for atoms distant several bonds from the chemically modified group. Furthermore, we present a highly efficient and accurate computational protocol based on a single structure using the maximum-overlap method for modeling core-level photoelectron spectra in aqueous environments. This work poses a broader question: to what extent can LJ-PES complement established structural techniques such as nuclear magnetic resonance? Answering this question is highly relevant in view of the large number of incorrect molecular structures published.
- Publication type
- Journal Article MeSH
The borohydride ion, BH4-, is an essential reducing agent in many technological processes, yet its full understanding has been elusive, because of at least two significant challenges. One challenge arises from its marginal stability in aqueous solutions outside of basic pH conditions, which considerably limits the experimental thermodynamic data. The other challenge comes from its unique and atypical hydration shell, stemming from the negative excess charge on its hydrogen atoms, which complicates the accurate modeling in classical atomistic simulations. In this study, we combine experimental and computer simulation techniques to devise a classical force field for NaBH4 and deepen our understanding of its characteristics. We report the first measurement of the ion's activity coefficient and extrapolate it to neutral pH conditions. Given the difficulties in directly measuring its solvation free energies, owing to its instability, we resort to quantum chemistry calculations. This combined strategy allows us to derive a set of nonpolarizable force-field parameters for the borohydride ion for classical molecular dynamics simulations. The derived force field simultaneously captures the solvation free energy, the hydration structure, as well as the activity coefficient of NaBH4 salt across a broad concentration range. The obtained insights into the hydration shell of the BH4- ion are crucial for accurately modeling and understanding its interactions with other molecules, ions, materials, and interfaces.
- Publication type
- Journal Article MeSH
Liquid-jet photoelectron spectroscopy was applied to determine the first acid dissociation constant (pKa) of aqueous-phase glucose while simultaneously identifying the spectroscopic signature of the respective deprotonation site. Valence spectra from solutions at pH values below and above the first pKa reveal a change in glucose's lowest ionization energy upon the deprotonation of neutral glucose and the subsequent emergence of its anionic counterpart. Site-specific insights into the solution-pH-dependent molecular structure changes are also shown to be accessible via C 1s photoelectron spectroscopy. The spectra reveal a considerably lower C 1s binding energy of the carbon site associated with the deprotonated hydroxyl group. The occurrence of photoelectron spectral fingerprints of cyclic and linear glucose prior to and upon deprotonation are also discussed. The experimental data are interpreted with the aid of electronic structure calculations. Our findings highlight the potential of liquid-jet photoelectron spectroscopy to act as a site-selective probe of the molecular structures that underpin the acid-base chemistry of polyprotic systems with relevance to environmental chemistry and biochemistry.
- Publication type
- Journal Article MeSH