Most cited article - PubMed ID 33041463
COVID-19 pandemic facilitating energy transition opportunities
This study aims to investigate blockchain technology for agricultural supply chains during the COVID-19 pandemic. Benefits and solutions are identified for the smooth conduction of agricultural supply chains during COVID-19 using blockchain. This study uses interviews with agricultural companies operating in Pakistan. The findings discover the seven most commonly shared benefits of applying blockchain technology, four major challenges, and promising solutions. About 100% of the respondents mentioned blockchain as a solution for tracking the shipment during COVID-19, data retrieval and data management, product and transaction frauds, and an Inflexible international supply chain. Roughly 75% of the respondents mentioned the challenge of lack of data retrieval and data management and the Inflexible international supply chain in COVID-19 besides their solutions. This study can expand existing knowledge related to agricultural supply chains. The experiences shared in this study can serve as lessons for practitioners to adopt the blockchain technology for performing agricultural supply chain during pandemic situations such as COVID-19.
- Keywords
- Agriculture, Blockchain, COVID-19, Digital transformation, Supply chain,
- Publication type
- Journal Article MeSH
This review covers the recent advancements in selected emerging energy sectors, emphasising carbon emission neutrality and energy sustainability in the post-COVID-19 era. It benefited from the latest development reported in the Virtual Special Issue of ENERGY dedicated to the 6th International Conference on Low Carbon Asia and Beyond (ICLCA'20) and the 4th Sustainable Process Integration Laboratory Scientific Conference (SPIL'20). As nations bind together to tackle global climate change, one of the urgent needs is the energy sector's transition from fossil-fuel reliant to a more sustainable carbon-free solution. Recent progress shows that advancement in energy efficiency modelling of components and energy systems has greatly facilitated the development of more complex and efficient energy systems. The scope of energy system modelling can be based on temporal, spatial and technical resolutions. The emergence of novel materials such as MXene, metal-organic framework and flexible phase change materials have shown promising energy conversion efficiency. The integration of the internet of things (IoT) with an energy storage system and renewable energy supplies has led to the development of a smart energy system that effectively connects the power producer and end-users, thereby allowing more efficient management of energy flow and consumption. The future smart energy system has been redefined to include all energy sectors via a cross-sectoral integration approach, paving the way for the greater utilization of renewable energy. This review highlights that energy system efficiency and sustainability can be improved via innovations in smart energy systems, novel energy materials and low carbon technologies. Their impacts on the environment, resource availability and social well-being need to be holistically considered and supported by diverse solutions, in alignment with the sustainable development goal of Affordable and Clean Energy (SDG 7) and other related SDGs (1, 8, 9, 11,13,15 and 17), as put forth by the United Nations.
- Keywords
- Emission neutrality, Energy efficiency, Energy sustainability, Novel material, Smart energy,
- Publication type
- Journal Article MeSH
The COVID-19 pandemic developed the severest public health event in recent history. The first stage for defence has already been documented. This paper moves forward to contribute to the second stage for offensive by assessing the energy and environmental impacts related to vaccination. The vaccination campaign is a multidisciplinary topic incorporating policies, population behaviour, planning, manufacturing, materials supporting, cold-chain logistics and waste treatment. The vaccination for pandemic control in the current phase is prioritised over other decisions, including energy and environmental issues. This study documents that vaccination should be implemented in maximum sustainable ways. The energy and related emissions of a single vaccination are not massive; however, the vast numbers related to the worldwide production, logistics, disinfection, implementation and waste treatment are reaching significant figures. The preliminary assessment indicates that the energy is at the scale of ~1.08 × 1010 kWh and related emissions of ~5.13 × 1012 gCO2eq when embedding for the envisaged 1.56 × 1010 vaccine doses. The cold supply chain is estimated to constitute 69.8% of energy consumption of the vaccination life cycle, with an interval of 26-99% depending on haul distance. A sustainable supply chain model that responds to an emergency arrangement, considering equality as well, should be emphasised to mitigate vaccination's environmental footprint. This effort plays a critical role in preparing for future pandemics, both environmentally and socially. Research in exploring sustainable single-use or reusable materials is also suggested to be a part of the plans. Diversified options could offer higher flexibility in mitigating environmental footprint even during the emergency and minimise the potential impact of material disruption or dependency.
- Keywords
- COVID-19 vaccination campaigns, Cold supply chain, Energy and emissions, Environmental impact, Interdisciplinary analysis, Sustainability,
- Publication type
- Journal Article MeSH
- Review MeSH
Energy resources are vital for the economic development of any nation, and they are currently recognised as an essential commodity for human beings. Many countries are facing various levels up to severe energy crisis due to limited natural resources, coupled with the Covid-19 pandemic. This crisis can lead to the shutdown or restriction of many industrial units, limited energy access, exacerbating unemployment, simultaneous impacts on people's lives. The main reason for these problems is the increasing gap between energy supply and demand, logistics, financial issues, as well as ineffective strategic planning issues. Different countries have different visions, missions, and strategies for energy management. Integrated strategic management is requisite for managing global energy. This study aims to develop a strategic management framework that can be used as a methodology for policymakers to analyse, plan, implement, and evaluate the energy strategy globally. A conceptual research method that relies on examining the related literature is applied to develop the framework. The present study yielded two main observations: 1) The identification of key concepts to consider in designing the strategic management framework for global energy, and 2) A strategic management framework that integrates the scope, process, important components, and steps to manage global energy strategies. This framework would contribute to providing a standard procedure to manage energy strategies for policymakers at the global, regional, national, state, city, district, and sector levels.
- Keywords
- COVID-19, Conceptual methods, Energy crisis, Energy management, Energy management framework, Global energy, Strategic management,
- Publication type
- Journal Article MeSH
COVID-19 has caused great challenges to the energy industry. Potential new practices and social forms being facilitated by the pandemics are having impacts on energy demand and consumption. Spatial and temporal heterogeneities of impacts appear gradually due to the dynamics of pandemics and mitigation measures. This paper overviews the impacts and challenges of COVID-19 pandemics on energy demand and consumption and highlights energy-related lessons and emerging opportunities. The discussion on energy-related issues is divided into four main sections: emergency situation and its impacts, environmental impacts and stabilising energy demand, recovering energy demand, and lessons and emerging opportunities. The changes in energy requirements are compared and analysed from multiple perspectives according to available data and information. In general, although the overall energy demand declines, the spatial and temporal variations are complicated. The energy intensity has presented apparent changes, the extra energy for COVID-19 fighting is non-negligible for stabilising energy demand, and the energy recovery in different regions presents significant differences. A crucial issue has been to allocate and find energy-related emerging opportunities for the post pandemics. This study could offer a direction in opening new avenues for increasing energy efficiency and promoting energy saving.
- Keywords
- COVID-19, Emerging opportunities, Energy impacts, Energy recovery, Environmental impacts, Lessons,
- Publication type
- Journal Article MeSH
This contribution starts from the broad perspective of the global material cycles, analysing the main resource and pollution issues world-wide from the viewpoint of the disturbances to these cycles caused by human activities. The issues are analysed in the light of the currently developing COVID-19 pandemic with the resulting behavioural and business pattern changes. It has been revealed in the analysis of previous reviews that there is a need for a more comprehensive analysis of the resource and environmental impact contributions by industrial and urban processes, as well as product supply chains. The review discusses the recent key developments in the areas of Process Integration and Optimisation, the assessment and reduction of process environmental impacts, waste management and integration, green technologies. That is accompanied by a review of the papers in the current Virtual Special Issue of the Journal of Cleaner Production which is dedicated to the extended articles developed on the basis of the papers presented at the 22nd Conference on Process Integration for Energy Saving and Pollution Reduction. The follow-up analysis reveals significant advances in the efficiency and emission cleaning effects of key processes, as well as water/wastewater management and energy storage. The further analysis of the developments identifies several key areas for further research and development - including increases of the safety and robustness of supply networks for products and services, increase of the resources use efficiency of core production and resource conversion processes, as well as the emphasis on improved product and process design for minimising product wastage.
- Keywords
- Circular economy, Cleaner production, Energy saving, Global material cycles, Pollution reduction,
- Publication type
- Journal Article MeSH
The coronavirus disease 2019 (COVID-19) pandemic has magnified the insufficient readiness of humans in dealing with such an unexpected occurrence. During the pandemic, sustainable development goals have been hindered severely. Various observations and lessons have been highlighted to emphasise local impacts on a single region or single sector, whilst the holistic and coupling impacts are rarely investigated. This study overviews the structural changes and spatial heterogeneities of changes in healthcare, energy and environment, and offers perspectives for the in-depth understanding of the COVID-19 impacts on the three sectors, in particular the cross-sections of them. Practical observations are summarised through the broad overview. A novel concept of the healthcare-energy-environment nexus under climate change constraints is proposed and discussed, to illustrate the relationships amongst the three sectors and further analyse the dynamics of the attention to healthcare, energy and environment in view of decision-makers. The society is still on the way to understanding the impacts of the whole episode of COVID-19 on healthcare, energy, environment and beyond. The raised nexus thinking could contribute to understanding the complicated COVID-19 impacts and guiding sustainable future planning.
- Keywords
- COVID-19 impacts, climate footprint, co-epidemics, healthcare–energy–environment nexus, interdisciplinary analysis, sustainable development,
- MeSH
- COVID-19 * MeSH
- Climate Change * MeSH
- Humans MeSH
- Pandemics * MeSH
- Delivery of Health Care * MeSH
- Sustainable Development MeSH
- Conservation of Energy Resources MeSH
- Environment MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
The COVID-19 epidemic has spread across the world within months and creates multiple challenges for healthcare providers. Patients with cardiovascular disease represent a vulnerable population when suffering from COVID-19. Most hospitals have been facing difficulties in the treatment of COVID-19 patients, and there is a need to minimise patient flow time so that staff health is less endangered, and more patients can be treated. This article shows how to use simulation techniques to prepare hospitals for a virus outbreak. The initial simulation of the current processes of the heart clinic first identified the bottlenecks. It confirmed that the current workflow is not optimal for COVID-19 patients; therefore, to reduce waiting time, three optimisation scenarios are proposed. In the best situation, the discrete-event simulation of the second scenario led to a 62.3% reduction in patient waiting time. This is one of the few studies that show how hospitals can use workflow modelling using timed coloured Petri nets to manage healthcare systems in practice. This technique would be valuable in these challenging times as the health of staff, and other patients are at risk from the nosocomial transmission.
- Keywords
- COVID-19, discrete-event simulation, healthcare systems, heart clinic, hospital, timed coloured Petri net, waiting time,
- MeSH
- Betacoronavirus MeSH
- COVID-19 MeSH
- Cardiology organization & administration MeSH
- Coronavirus Infections * MeSH
- Humans MeSH
- Pandemics * MeSH
- Computer Simulation MeSH
- Workflow * MeSH
- SARS-CoV-2 MeSH
- Pneumonia, Viral * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH