Most cited article - PubMed ID 33186797
Differential diagnosis of tremor syndromes using MRI relaxometry
BACKGROUND: The research on possible cerebral involvement in Crohn's disease (CD) has been largely marginalized and failed to capitalize on recent developments in magnetic resonance imaging (MRI). OBJECTIVE: This cross-sectional pilot study searches for eventual macrostructural and microstructural brain affection in CD in remission and early after the disease onset. METHODS: 14 paediatric CD patients and 14 healthy controls underwent structural, diffusion weighted imaging and quantitative relaxation metrics acquisition, both conventional free precession and adiabatic rotating frame transverse and longitudinal relaxation time constants as markers of myelination, iron content and cellular loss. RESULTS: While no inter-group differences in cortical thickness and relaxation metrics were found, lower mean diffusivity and higher intracellular volume fraction were detected in CD patients over vast cortical regions essential for the regulation of the autonomous nervous system, sensorimotor processing, cognition and behavior, pointing to wide-spread cytotoxic oedema in the absence of demyelination, iron deposition or atrophy. CONCLUSION: Although still requiring further validation in longitudinal projects enrolling larger numbers of subjects, this study provides an indication of wide-spread cortical oedema in CD patients very early after the disease onset and sets possible directions for further research.
- Keywords
- Crohn’s disease, MRI relaxometry, brain oedema, diffusion tensor imaging, neuroinflammation,
- Publication type
- Journal Article MeSH
Quantitative maps of rotating frame relaxation (RFR) time constants are sensitive and useful magnetic resonance imaging tools with which to evaluate tissue integrity in vivo. However, to date, only moderate image resolutions of 1.6 x 1.6 x 3.6 mm3 have been used for whole-brain coverage RFR mapping in humans at 3 T. For more precise morphometrical examinations, higher spatial resolutions are desirable. Towards achieving the long-term goal of increasing the spatial resolution of RFR mapping without increasing scan times, we explore the use of the recently introduced Transform domain NOise Reduction with DIstribution Corrected principal component analysis (T-NORDIC) algorithm for thermal noise reduction. RFR acquisitions at 3 T were obtained from eight healthy participants (seven males and one female) aged 52 ± 20 years, including adiabatic T1ρ, T2ρ, and nonadiabatic Relaxation Along a Fictitious Field (RAFF) in the rotating frame of rank n = 4 (RAFF4) with both 1.6 x 1.6 x 3.6 mm3 and 1.25 x 1.25 x 2 mm3 image resolutions. We compared RFR values and their confidence intervals (CIs) obtained from fitting the denoised versus nondenoised images, at both voxel and regional levels separately for each resolution and RFR metric. The comparison of metrics obtained from denoised versus nondenoised images was performed with a two-sample paired t-test and statistical significance was set at p less than 0.05 after Bonferroni correction for multiple comparisons. The use of T-NORDIC on the RFR images prior to the fitting procedure decreases the uncertainty of parameter estimation (lower CIs) at both spatial resolutions. The effect was particularly prominent at high-spatial resolution for RAFF4. Moreover, T-NORDIC did not degrade map quality, and it had minimal impact on the RFR values. Denoising RFR images with T-NORDIC improves parameter estimation while preserving the image quality and accuracy of all RFR maps, ultimately enabling high-resolution RFR mapping in scan times that are suitable for clinical settings.
- Keywords
- NORDIC, brain mapping, denoising, quantitative MRI, rotating frame relaxation,
- MeSH
- Algorithms MeSH
- Principal Component Analysis MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging * methods MeSH
- Brain Mapping MeSH
- Brain * diagnostic imaging MeSH
- Signal-To-Noise Ratio * MeSH
- Rotation MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Given the substantial dependence of neurons on continuous supply of energy, the distribution of major cerebral arteries opens a question whether the distance from the main supply arteries constitutes a modulating factor for the microstructural and functional properties of brain tissue. To tackle this question, multimodal MRI acquisitions of 102 healthy volunteers over the full adult age span were utilised. Relaxation along a fictitious field in the rotating frame of rank n = 4 (RAFF4), adiabatic T1ρ, T2ρ, and intracellular volume fraction (fICVF) derived from diffusion-weighted imaging were implemented to quantify microstructural (cellularity, myelin density, iron concentration) tissue characteristics and degree centrality and fractional amplitude of low-frequency fluctuations to probe for functional metrics. Inverse correlation of arterial distance with robust homogeneity was detected for T1ρ, T2ρ and RAFF4 for cortical grey matter and white matter, showing substantial complex microstructural differences between brain tissue close and farther from main arterial trunks. Albeit with wider variability, functional metrics pointed to increased connectivity and neuronal activity in areas farther from main arteries. Surprisingly, multiple of these microstructural and functional distance-based gradients diminished with higher age, pointing to uniformization of brain tissue with ageing. All in all, this pilot study provides a novel insight on brain regionalisation based on artery distance, which merits further investigation to validate its biological underpinnings.
- Keywords
- Arterial distance, Diffusion weighted imaging, Quantitative MRI, Relaxometry, Resting-state functional MRI,
- MeSH
- Arteries MeSH
- White Matter * MeSH
- Diffusion Magnetic Resonance Imaging MeSH
- Adult MeSH
- Humans MeSH
- Magnetic Resonance Imaging * methods MeSH
- Brain MeSH
- Pilot Projects MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
The advent of new, advanced quantitative MRI metrics allows for in vivo evaluation of multiple biological processes highly relevant for ageing. The presented study combines several MRI parameters hypothesised to detect distinct biological characteristics as myelin density, cellularity, cellular membrane integrity and iron concentration. 116 healthy volunteers, continuously distributed over the whole adult age span, underwent a multi-modal MRI protocol acquisition. Scatterplots of individual MRI metrics revealed that certain MRI protocols offer much higher sensitivity to early adulthood changes while plateauing in higher age (e.g., global functional connectivity in cerebral cortex or orientation dispersion index in white matter), while other MRI metrics provided reverse ability-stable levels in young adulthood with sharp changes with rising age (e.g., T1ρ and T2ρ). Nonetheless, despite the previously published validations of specificity towards microstructural biology based on cytoarchitectonic maps in healthy population or alterations in certain pathologies, several metrics previously hypothesised to be selective to common measures failed to show similar scatterplot distributions, pointing to further confounding factors directly related to age. Furthermore, other metrics, previously shown to detect different biological characteristics, exhibited substantial intercorrelations, be it due to the nature of the MRI protocol itself or co-dependence of relevant biological microstructural processes. All in all, the presented study provides a unique basis for the design and choice of relevant MRI parameters depending on the age group of interest. Furthermore, it calls for caution in simplistic biological inferences in ageing based on one simple MRI metric, even though previously validated under other conditions. Complex multi-modal approaches combining several metrics to extract the shared subcomponent will be necessary to achieve the desired goal of histological MRI.
- Keywords
- ageing, diffusion weighted imaging, quantitative MRI, resting state functional MRI, rotating frame relaxometry,
- Publication type
- Journal Article MeSH