Most cited article - PubMed ID 33194427
Polylactic acid as a suitable material for 3D printing of protective masks in times of COVID-19 pandemic
Adhesion G protein-coupled receptors (aGPCRs) play an important role in neurodevelopment, immune defence and cancer; however, their role throughout viral infections is mostly unexplored. We have been searching for specific aGPCRs involved in SARS-CoV-2 infection of mammalian cells. In the present study, we infected human epithelial cell lines derived from lung adenocarcinoma (Calu-3) and colorectal carcinoma (Caco-2) with SARS-CoV-2 in order to analyse changes in the level of mRNA encoding individual aGPCRs at 6 and 12 h post infection. Based on significantly altered mRNA levels, we identified four aGPCR candidates-ADGRB3/BAI3, ADGRD1/GPR133, ADGRG7/GPR128 and ADGRV1/GPR98. Of these receptors, ADGRD1/GPR133 and ADGRG7/GPR128 showed the largest increase in mRNA levels in SARS-CoV-2-infected Calu-3 cells, whereas no increase was observed with heat-inactivated SARS-CoV-2 and virus-cleared conditioned media. Next, using specific siRNA, we downregulated the aGPCR candidates and analysed SARS-CoV-2 entry, replication and infectivity in both cell lines. We observed a significant decrease in the amount of SARS-CoV-2 newly released into the culture media by cells with downregulated ADGRD1/GPR133 and ADGRG7/GPR128. In addition, using a plaque assay, we observed a reduction in SARS-CoV-2 infectivity in Calu-3 cells. In summary, our data suggest that selected aGPCRs might play a role during SARS-CoV-2 infection of mammalian cells.
- Keywords
- ADGRD1, ADGRG7, Caco-2, Calu-3, GPR128, GPR133, SARS-CoV-2, adhesion GPCR, mRNA expression,
- MeSH
- Adenocarcinoma of Lung * genetics virology pathology metabolism MeSH
- Caco-2 Cells MeSH
- COVID-19 * genetics virology metabolism MeSH
- Humans MeSH
- RNA, Messenger * genetics metabolism MeSH
- Cell Line, Tumor MeSH
- Lung Neoplasms genetics virology pathology metabolism MeSH
- Receptors, G-Protein-Coupled * metabolism genetics MeSH
- SARS-CoV-2 * genetics physiology metabolism MeSH
- Up-Regulation * genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA, Messenger * MeSH
- Receptors, G-Protein-Coupled * MeSH
Due to the emerging resistance of microorganisms and viruses to conventional treatments, the importance of self-disinfecting materials is highly increasing. Such materials could be silver or its nanoparticles (AgNPs), both of which have been studied for their antimicrobial effect. In this study, we compared the biological effects of AgNP coatings with and without a plasma-polymerized hexamethyldisiloxane (ppHMDSO) protective film to smooth silver or copper coatings under three ambient conditions that mimic their potential medical use (dry or wet environments and an environment simulating the human body). The coatings were deposited on 3D printed polylactic acid substrates by DC magnetron sputtering, and their surface morphology was visualized using scanning electron microscopy. Cytotoxicity of the samples was evaluated using human lung epithelial cells A549. Furthermore, antibacterial activity was determined against the Gram-negative pathogenic bacterium Pseudomonas aeruginosa PAO1 and antiviral activity was assessed using human rhinovirus species A/type 2. The obtained results showed that overcoating of AgNPs with ppHMDSO creates the material with antibacterial and antiviral activity and at the same time without a cytotoxic effect for the surrounding tissue cells. These findings suggest that the production of 3D printed substrates coated with a layer of AgNPs-ppHMDSO could have potential applications in the medical field as functional materials.
- Keywords
- Pseudomonas aeruginosa, antimicrobial activity, antiviral activity, cold atmospheric plasma, magnetron sputtering, metallic coating, polylactic acid, rhinovirus,
- Publication type
- Journal Article MeSH
The increasing risk of antibiotic failure in the treatment of Pseudomonas aeruginosa infections is largely related to the production of a wide range of virulence factors. The use of non-thermal plasma (NTP) is a promising alternative to antimicrobial treatment. Nevertheless, there is still a lack of knowledge about the effects of NTP on the virulence factors production. We evaluated the ability of four NTP-affected P. aeruginosa strains to re-form biofilm and produce Las-B elastase, proteases, lipases, haemolysins, gelatinase or pyocyanin. Highly strains-dependent inhibitory activity of NTP against extracellular virulence factors production was observed. Las-B elastase activity was reduced up to 82% after 15-min NTP treatment, protease activity and pyocyanin production by biofilm cells was completely inhibited after 60 min, in contrast to lipases and gelatinase production, which remained unchanged. However, for all strains tested, a notable reduction in biofilm re-development ability was depicted using spinning disc confocal microscopy. In addition, NTP exposure of mature biofilms caused disruption of biofilm cells and their dispersion into the environment, as shown by transmission electron microscopy. This appears to be a key step that could help overcome the high resistance of P. aeruginosa and its eventual elimination, for example in combination with antibiotics still highly effective against planktonic cells.
- Keywords
- antivirulence factors, biofilm disruption, cold atmospheric plasma (CAP), combined therapy, haemolytic activity,
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Biofilms MeSH
- Endopeptidases pharmacology MeSH
- Virulence Factors MeSH
- Hemolysin Proteins pharmacology MeSH
- Humans MeSH
- Pancreatic Elastase MeSH
- Plankton MeSH
- Plasma Gases * pharmacology MeSH
- Peptide Hydrolases MeSH
- Pseudomonas Infections * MeSH
- Pseudomonas aeruginosa MeSH
- Pyocyanine MeSH
- Quorum Sensing MeSH
- Gelatinases pharmacology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Endopeptidases MeSH
- Virulence Factors MeSH
- Hemolysin Proteins MeSH
- Pancreatic Elastase MeSH
- Plasma Gases * MeSH
- Peptide Hydrolases MeSH
- Pyocyanine MeSH
- Gelatinases MeSH
The current pandemic resulted in a rapidly increasing demand for personal protective equipment (PPE) initially leading to severe shortages of these items. Hence, during an unexpected and fast virus spread, the possibility of reusing highly efficient protective equipment could provide a viable solution for keeping both healthcare professionals and the general public equipped and protected. This requires an efficient decontamination technique that preserves functionality of the sensitive materials used for PPE production. Non-thermal plasma (NTP) is a decontamination technique with documented efficiency against select bacterial and fungal pathogens combined with low damage to exposed materials. We have investigated NTP for decontamination of high-efficiency P3 R filters from viral respiratory pathogens in comparison to other commonly used techniques. We show that NTP treatment completely inactivates SARS-CoV-2 and three other common human respiratory viruses including Influenza A, Rhinovirus and Adenovirus, revealing an efficiency comparable to 90°C dry heat or UVC light. Unlike some of the tested techniques (e.g., autoclaving), NTP neither influenced the filtering efficiency nor the microstructure of the filter. We demonstrate that NTP is a powerful and economic technology for efficient decontamination of protective filters and other sensitive materials from different respiratory pathogens.
- Keywords
- Adenovirus, Pseudomonas aerguinosa, Rhinovirus, cold plasma, human respiratory viruses, influenza A, particle filter, protective equipment,
- Publication type
- Journal Article MeSH