The organization of the genome nucleotide (AT/GC) composition in vertebrates remains poorly understood despite the numerous genome assemblies available. Particularly, the origin of the AT/GC heterogeneity in amniotes, in comparison to the homogeneity in anamniotes, is controversial. Recently, several exceptions to this dichotomy were confirmed in an ancient fish lineage with mammalian AT/GC heterogeneity. Hence, our current knowledge necessitates a reevaluation considering this fact and utilizing newly available data and tools. We analyzed fish genomes in silico with as low user input as possible to compare previous approaches to assessing genome composition. Our results revealed a disparity between previously used plots of GC% and histograms representing the authentic distribution of GC% values in genomes. Previous plots heavily reduced the range of GC% values in fish to comply with the alleged AT/GC homogeneity and AT-richness of their genomes. We illustrate how the selected sequence size influences the clustering of GC% values. Previous approaches that disregarded chromosome and genome sizes, which are about three times smaller in fish than in mammals, distorted their results and contributed to the persisting confusion about fish genome composition. Chromosome size and their transposons may drive the AT/GC heterogeneity apparent on mammalian chromosomes, whereas far less in fishes.
- Klíčová slova
- AT/GC genome composition, GC-content evolution transposons, natural breaks,
- MeSH
- délka genomu MeSH
- isochory * genetika MeSH
- ryby * genetika MeSH
- savčí chromozomy MeSH
- savci MeSH
- shluková analýza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- isochory * MeSH
Cytogenetic and compositional studies considered fish genomes rather poor in guanine-cytosine content (GC%) because of a putative "sharp increase in genic GC% during the evolution of higher vertebrates". However, the available genomic data have not been exploited to confirm this viewpoint. In contrast, further misunderstandings in GC%, mostly of fish genomes, originated from a misapprehension of the current flood of data. Utilizing public databases, we calculated the GC% in animal genomes of three different, technically well-established fractions: DNA (entire genome), cDNA (complementary DNA), and cds (exons). Our results across chordates help set borders of GC% values that are still incorrect in literature and show: (i) fish in their immense diversity possess comparably GC-rich (or even GC-richer) genomes as higher vertebrates, and fish exons are GC-enriched among vertebrates; (ii) animal genomes generally show a GC-enrichment from the DNA, over cDNA, to the cds level (i.e., not only the higher vertebrates); (iii) fish and invertebrates show a broad(er) inter-quartile range in GC%, while avian and mammalian genomes are more constrained in their GC%. These results indicate no sharp increase in the GC% of genes during the transition to higher vertebrates, as stated and numerously repeated before. We present our results in 2D and 3D space to explore the compositional genome landscape and prepared an online platform to explore the AT/GC compositional genome evolution.
- Klíčová slova
- AT/GC evolution, GC content, GC landscape pipeline, compositional cytogenomics, genome evolution,
- MeSH
- DNA MeSH
- genomika MeSH
- komplementární DNA MeSH
- molekulární evoluce MeSH
- obratlovci * genetika MeSH
- ryby * genetika MeSH
- savci genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- komplementární DNA MeSH
Although crocodilians have attracted enormous attention in other research fields, from the cytogenetic point of view, this group remains understudied. Here, we analyzed the karyotypes of eight species formally described from the Alligatoridae family using differential staining, fluorescence in situ hybridization with rDNA and repetitive motifs as a probe, whole chromosome painting (WCP), and comparative genome hybridization. All Caimaninae species have a diploid chromosome number (2n) 42 and karyotypes dominated by acrocentric chromosomes, in contrast to both species of Alligatorinae, which have 2n = 32 and karyotypes that are predominantly metacentric, suggesting fusion/fission rearrangements. Our WCP results supported this scenario by revealing the homeology of the largest metacentric pair present in both Alligator spp. with two smaller pairs of acrocentrics in Caimaninae species. The clusters of 18S rDNA were found on one chromosome pair in all species, except for Paleosuchus spp., which possessed three chromosome pairs bearing these sites. Similarly, comparative genomic hybridization demonstrated an advanced stage of sequence divergence among the caiman genomes, with Paleosuchus standing out as the most divergent. Thus, although Alligatoridae exhibited rather low species diversity and some level of karyotype stasis, their genomic content indicates that they are not as conserved as previously thought. These new data deepen the discussion of cytotaxonomy in this family.
- Klíčová slova
- Alligatoridae, chromosome, cytogenomics, molecular cytogenetics,
- MeSH
- aligátoři a krokodýli klasifikace genetika MeSH
- chromozomy genetika MeSH
- hybridizace in situ fluorescenční MeSH
- karyotyp * MeSH
- molekulární evoluce * MeSH
- srovnávací genomová hybridizace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Our novel Python-based tool EVANGELIST allows the visualization of GC and repeats percentages along chromosomes in sequenced genomes and has enabled us to perform quantitative large-scale analyses on the chromosome level in fish and other vertebrates. This is a different approach from the prevailing analyses, i.e., analyses of GC% in the coding sequences that make up not more than 2% in human. We identified GC content (GC%) elevations in microchromosomes in ancient fish lineages similar to avian microchromosomes and a large variability in the relationship between the chromosome size and their GC% across fish lineages. This raises the question as to what extent does the chromosome size drive GC% as posited by the currently accepted explanation based on the recombination rate. We ascribe the differences found across fishes to varying GC% of repetitive sequences. Generally, our results suggest that the GC% of repeats and proportion of repeats are independent of the chromosome size. This leaves an open space for another mechanism driving the GC evolution in vertebrates.
- Klíčová slova
- GC content, GC-biased gene conversion, chromosome size, linkage group, microchromosomes,
- MeSH
- chromozomy genetika MeSH
- cytogenetika * MeSH
- genom genetika MeSH
- molekulární evoluce * MeSH
- obratlovci klasifikace genetika MeSH
- ptáci klasifikace genetika MeSH
- rekombinace genetická genetika MeSH
- repetitivní sekvence nukleových kyselin MeSH
- ryby klasifikace genetika MeSH
- zastoupení bazí genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH