Most cited article - PubMed ID 33458942
The role of prolines and glycine in the transmembrane domain of LAT
Studying the complex realm of cellular communication and interactions by fluorescence microscopy requires sample fixation on a transparent substrate. To activate T cells, which are pivotal in controlling the immune system, it is important to present the activating antigen in a spatial arrangement similar to the nature of the antigen-presenting cell, including the presence of ligands on microvilli. Similar arrangement is predicted for some other immune cells. In this work, immune cell-stimulating platform based on nanoparticle-ligand conjugates have been developed using a scalable, affordable, and broadly applicable technology, which can be readily deployed without the need for state-of-the-art nanofabrication instruments. The validation of surface biofunctionalization was performed by combination of fluorescence and atomic force microscopy techniques. We demonstrate that the targeted system serves as a biomimetic scaffold on which immune cells make primary contact with the microvilli-mimicking substrate and exhibit stimulus-specific activation.
- Keywords
- Biotechnology, Cell biology, Immunology,
- Publication type
- Journal Article MeSH
Cells communicate with their environment via surface receptors, but nanoscopic receptor organization with respect to complex cell surface morphology remains unclear. This is mainly due to a lack of accessible, robust and high-resolution methods. Here, we present an approach for mapping the topography of receptors at the cell surface with nanometer precision. The method involves coating glass coverslips with glycine, which preserves the fine membrane morphology while allowing immobilized cells to be positioned close to the optical surface. We developed an advanced and simplified algorithm for the analysis of single-molecule localization data acquired in a biplane detection scheme. These advancements enable direct and quantitative mapping of protein distribution on ruffled plasma membranes with near isotropic 3D nanometer resolution. As demonstrated successfully for CD4 and CD45 receptors, the described workflow is a straightforward quantitative technique to study molecules and their interactions at the complex surface nanomorphology of differentiated metazoan cells.
- MeSH
- Cell Membrane metabolism MeSH
- Nanotechnology * MeSH
- Receptors, Cell Surface * metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Receptors, Cell Surface * MeSH