Nejvíce citovaný článek - PubMed ID 33477923
Implementation of Antibiotic Stewardship in a University Hospital Setting
This observational retrospective study aimed to analyze whether/how the spectrum of bacterial pathogens and their resistance to antibiotics changed during the worst part of the COVID-19 pandemic (1 November 2020 to 30 April 2021) among intensive care patients in University Hospital Olomouc, Czech Republic, as compared with the pre-pandemic period (1 November 2018 to 30 April 2019). A total of 789 clinically important bacterial isolates from 189 patients were cultured during the pre-COVID-19 period. The most frequent etiologic agents causing nosocomial infections were strains of Klebsiella pneumoniae (17%), Pseudomonas aeruginosa (11%), Escherichia coli (10%), coagulase-negative staphylococci (9%), Burkholderia multivorans (8%), Enterococcus faecium (6%), Enterococcus faecalis (5%), Proteus mirabilis (5%) and Staphylococcus aureus (5%). Over the comparable COVID-19 period, a total of 1500 bacterial isolates from 372 SARS-CoV-2-positive patients were assessed. While the percentage of etiological agents causing nosocomial infections increased in Enterococcus faecium (from 6% to 19%, p < 0.0001), Klebsiella variicola (from 1% to 6%, p = 0.0004) and Serratia marcescens (from 1% to 8%, p < 0.0001), there were significant decreases in Escherichia coli (from 10% to 3%, p < 0.0001), Proteus mirabilis (from 5% to 2%, p = 0.004) and Staphylococcus aureus (from 5% to 2%, p = 0.004). The study demonstrated that the changes in bacterial resistance to antibiotics are ambiguous. An increase in the frequency of ESBL-positive strains of some species (Serratia marcescens and Enterobacter cloacae) was confirmed; on the other hand, resistance decreased (Escherichia coli, Acinetobacter baumannii) or the proportion of resistant strains remained unchanged over both periods (Klebsiella pneumoniae, Enterococcus faecium). Changes in pathogen distribution and resistance were caused partly due to antibiotic selection pressure (cefotaxime consumption increased significantly in the COVID-19 period), but mainly due to clonal spread of identical bacterial isolates from patient to patient, which was confirmed by the pulse field gel electrophoresis methodology. In addition to the above shown results, the importance of infection prevention and control in healthcare facilities is discussed, not only for dealing with SARS-CoV-2 but also for limiting the spread of bacteria.
- Klíčová slova
- COVID-19, antibiotics, bacteria, multidrug resistance,
- Publikační typ
- časopisecké články MeSH
The number of antibiotic-resistant bacterial strains is increasing due to the excessive and inappropriate use of antibiotics, which are therefore becoming ineffective. Here, we report an effective way of enhancing and restoring the antibacterial activity of inactive antibiotics by applying them together with a cyanographene/Ag nanohybrid, a nanomaterial that is applied for the first time for restoring the antibacterial activity of antibiotics. The cyanographene/Ag nanohybrid was synthesized by chemical reduction of a precursor material in which silver cations are coordinated on a cyanographene sheet. The antibacterial efficiency of the combined treatment was evaluated by determining fractional inhibitory concentrations (FIC) for antibiotics with different modes of action (gentamicin, ceftazidime, ciprofloxacin, and colistin) against the strains Escherichia coli, Pseudomonas aeruginosa, and Enterobacter kobei with different resistance mechanisms. Synergistic and partial synergistic effects against multiresistant strains were demonstrated for all of these antibiotics except ciprofloxacin, which exhibited an additive effect. The lowest average FICs equal to 0.29 and 0.39 were obtained for colistin against E. kobei and for gentamicin against E. coli, respectively. More importantly, we have experimentally confirmed for the first time, that interaction between the antibiotic's mode of action and the mechanism of bacterial resistance strongly influenced the combined treatment's efficacy.
- MeSH
- antibakteriální látky * chemie farmakologie MeSH
- ciprofloxacin farmakologie MeSH
- Escherichia coli MeSH
- gentamiciny farmakologie MeSH
- kolistin * farmakologie MeSH
- mikrobiální testy citlivosti MeSH
- Pseudomonas aeruginosa MeSH
- synergismus léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky * MeSH
- ciprofloxacin MeSH
- gentamiciny MeSH
- kolistin * MeSH
Increasing antimicrobial resistance in nosocomial pathogens, such as Acinetobacter baumannii, is becoming a serious threat to public health. It is necessary to detect β-lactamase-producing microorganisms in clinical settings to be able to control the spread of carbapenem resistance. This study was conducted to evaluate the presence of β-lactamases in a selected clinical isolate of A. baumannii of ST2P/ST195Ox and to characterize possible enzymes, as well as its β-lactam resistome, using PCR and whole-genome sequencing analysis. PCR and sequencing confirmed that the isolate harbored five bla gene alleles, namely, blaADC-73, blaTEM-1, blaOXA-23, blaOXA-58 and blaOXA-66, as well as aminoglycosides, macrolides, sulfonamides and tetracyclines resistance determinants, which were either chromosomally and/or plasmid located. Furthermore, a gene order comparison using MAUVE alignment showed multiple changes compared with the clinical isolate of Malaysian A. baumannii AC30 genome and 76 regions with high homology. This study suggests that resistance to β-lactams in this A. baumannii isolate is mainly due to an overproduction of β-lactamases in combination with other resistance mechanism (efflux pump system).
- Klíčová slova
- Acinetobacter baumannii, PCR, antibiotic resistance, bacteria, β-lactamase,
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
The growing bacterial resistance to available β-lactam antibiotics is a very serious public health problem, especially due to the production of a wide range of β-lactamases. At present, clinically important bacteria are increasingly acquiring new elements of resistance to carbapenems and polymyxins, including extended-spectrum β-lactamases (ESBLs), carbapenemases and phosphoethanolamine transferases of the MCR type. These bacterial enzymes limit therapeutic options in human and veterinary medicine. It must be emphasized that there is a real risk of losing the ability to treat serious and life-threatening infections. The present study aimed to design specific oligonucleotides for rapid PCR detection of ESBL-encoding genes and in silico analysis of selected ESBL enzymes. A total of 58 primers were designed to detect 49 types of different ESBL genes. After comparing the amino acid sequences of ESBLs (CTX-M, SHV and TEM), phylogenetic trees were created based on the presence of conserved amino acids and homologous motifs. This study indicates that the proposed primers should be able to specifically detect more than 99.8% of all described ESBL enzymes. The results suggest that the in silico tested primers could be used for PCR to detect the presence of ESBL genes in various bacteria, as well as to monitor their spread.
- Klíčová slova
- ESBL, PCR, antibiotic resistance, bacteria, primer,
- Publikační typ
- časopisecké články MeSH