Most cited article - PubMed ID 33513434
Computational design of enzymes for biotechnological applications
Enzymes with buried active sites utilize molecular tunnels to exchange substrates, products, and solvent molecules with the surface. These transport mechanisms are crucial for protein function and influence various properties. As proteins are inherently dynamic, their tunnels also vary structurally. Understanding these dynamics is essential for elucidating structure-function relationships, drug discovery, and bioengineering. Caver Web 2.0 is a user-friendly web server that retains all Caver Web 1.0 functionalities while introducing key improvements: (i) generation of dynamic ensembles via automated molecular dynamics with YASARA, (ii) analysis of dynamic tunnels with CAVER 3.0, (iii) prediction of ligand trajectories in multiple snapshots with CaverDock 1.2, and (iv) customizable ligand libraries for virtual screening. Users can assess protein flexibility, identify and characterize tunnels, and predict ligand trajectories and energy profiles in both static and dynamic structures. Additionally, the platform supports virtual screening with FDA/EMA-approved drugs and user-defined datasets. Caver Web 2.0 is a versatile tool for biological research, protein engineering, and drug discovery, aiding the identification of strong inhibitors or new substrates to bind to the active sites or tunnels, and supporting drug repurposing efforts. The server is freely accessible at https://loschmidt.chemi.muni.cz/caverweb.
- MeSH
- Internet MeSH
- Catalytic Domain MeSH
- Protein Conformation MeSH
- Ligands MeSH
- Drug Discovery MeSH
- Proteins * chemistry metabolism MeSH
- Molecular Dynamics Simulation MeSH
- Software * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Ligands MeSH
- Proteins * MeSH
Enzymes play a crucial role in sustainable industrial applications, with their optimization posing a formidable challenge due to the intricate interplay among residues. Computational methodologies predominantly rely on evolutionary insights of homologous sequences. However, deciphering the evolutionary variability and complex dependencies among residues presents substantial hurdles. Here, we present a new machine-learning method based on variational autoencoders and evolutionary sampling strategy to address those limitations. We customized our method to generate novel sequences of model enzymes, haloalkane dehalogenases. Three design-build-test cycles improved the solubility of variants from 11% to 75%. Thorough experimental validation including the microfluidic device MicroPEX resulted in 20 multiple-point variants. Nine of them, sharing as little as 67% sequence similarity with the template, showed a melting temperature increase of up to 9 °C and an average improvement of 3 °C. The most stable variant demonstrated a 3.5-fold increase in activity compared to the template. High-quality experimental data collected with 20 variants represent a valuable data set for the critical validation of novel protein design approaches. Python scripts, jupyter notebooks, and data sets are available on GitHub (https://github.com/loschmidt/vae-dehalogenases), and interactive calculations will be possible via https://loschmidt.chemi.muni.cz/fireprotasr/.
- Publication type
- Journal Article MeSH
SUMMARY: Protein design requires information about how mutations affect protein stability. Many web-based predictors are available for this purpose, yet comparing them or using them en masse is difficult. Here, we present BenchStab, a console tool/Python package for easy and quick execution of 19 predictors and result collection on a list of mutants. Moreover, the tool is easily extensible with additional predictors. We created an independent dataset derived from the FireProtDB and evaluated 24 different prediction methods. AVAILABILITY AND IMPLEMENTATION: BenchStab is an open-source Python package available at https://github.com/loschmidt/BenchStab with a detailed README and example usage at https://loschmidt.chemi.muni.cz/benchstab. The BenchStab dataset is available on Zenodo: https://zenodo.org/records/10637728.
- MeSH
- Databases, Protein MeSH
- Internet * MeSH
- Proteins chemistry MeSH
- Software * MeSH
- Protein Stability MeSH
- Computational Biology methods MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Proteins MeSH